CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2003, Vol. 75, No. 4, pp. 445-460

Challenging metal-based transformations. From single-bond activation to catalysis and metallaquinonoids

D. Milstein

Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel

Catalytic reactions resulting from our C–X (X = H, C, O, N, halide) bond activation studies are described. Aryl chlorides can react with aluminum alkyls in preference to bromides. Using PCP-type Pd catalysts, Heck reaction with aryl iodides and bromides can proceed without involvement of Pd(0). Ru-catalyzed oxidative coupling of arenes with alkenes using O2 was accomplished.
Using specifically designed systems, the scope and mechanisms of C–C activation in solution was studied and compared to C–H activation. C–C activation by Rh(I), Ir(I), Ni(II),Pt(II), Ru(II), and Os(II) was observed. Metal insertion into a strong C–C bond can be kinetically and thermodynamically more favorable than the competing C–H activation. Selective, single-step oxidative addition of a strong C–C bond to a metal was observed and kinetically evaluated. Catalytic C–C hydrogenolysis was demonstrated. A combination of C–C activation and C–R formation (R = aryl, silyl) resulted in unusual methylene transfer chemistry. Selective activation of aryl–O and Me–O bonds was observed. New types of interactions between metals and arenes and unusual quinonoid complexes, including quinone methides, xylylenes, methylene arenium, and a metallaquinone, were discovered. C–H and C–C agostic complexes of cationic metals, proposed as intermediates in bond activation, were isolated. Stabilization and controlled release of biologically relevant, extremely unstable, simple quinone methides, was accomplished.