Pure Appl. Chem., 2013, Vol. 85, No. 5, pp. 921-940
http://dx.doi.org/10.1351/PAC-CON-13-01-03
Published online 2013-04-29
Hyperconjugation in hydrocarbons: Not just a “mild sort of conjugation”*
References
- 1a. R. S. Phys. Rev. 43, 279 (1933). ( . http://dx.doi.org/10.1103/PhysRev.43.279)
- 1b. R. S. J. Chem. Phys. 7, 339 (1939). ( . http://dx.doi.org/10.1063/1.1750446)
- 1c. R. S. J. Am. Chem. Soc. 63, 41 (1941). ( , C. A. Rieke, W. G. Brown. http://dx.doi.org/10.1021/ja01846a008)
- 2a. Y. Acc. Chem. Res. 40, 113 (2007). ( , J. Gao. http://dx.doi.org/10.1021/ar068073w)
- 2b. V. Nature 411, 565 (2001). ( , L. Goodman. http://dx.doi.org/10.1038/35079036)
- 2c. Y. WIREs: Comput. Mol. Sci. 1, 164 (2011) and refs. therein. ( . http://dx.doi.org/10.1002/wcms.22)
- 3. The expression “tight space” adopted here for illustrating the geometrical consequences of hyperconjugation in compact molecules was inspired by the title “The chemical imagination at work in very tight spaces”, W. Angew. Chem., Int. Ed. 46, 3620 (2007). ( , R. Hoffmann, J. Feng, N. W. Ashcroft. http://dx.doi.org/10.1002/anie.200602485)
- 4. I. V. WIREs: Comput. Mol. Sci. 1, 109 (2011). ( , K. M. Gilmore, P. W. Peterson. http://dx.doi.org/10.1002/wcms.6)
- 5a. M. T. J. Phys. Chem. A 112, 2082 (2008); for experimental data (65.9 ± 0.9 kcal/mol). ( , M. H. Matus, W. A. Lester Jr., D. A. Dixon. http://dx.doi.org/10.1021/jp074769a)
- 5b. W. v. E. Chem. Ber. 122, 1263 (1989). ( , W. R. Roth, F. Bauer, R. Breuckmann, T. Ebbrecht, M. Herbold, R. Schmidt, H. W. Lennartz, D. Lenoir, R. Boese. http://dx.doi.org/10.1002/cber.19891220710)
- 5c. J. E. J. Chem. Phys. 12, 315 (1955). , B. S. Rabinovitch, F. S. Looney.
- 6. K. J. Am. Chem. Soc. 105, 5252 (1983). , M. Barzaghi, G. A. Olah, J. A. Pople, A. J. Kos, P. v. R. Schleyer.
- 7. M. A. J. Am. Chem. Soc. 103, 5677 (1981). ( , H. F. Schaefer III. http://dx.doi.org/10.1021/ja00409a008)
- 8. P. v. R. J. Am. Chem. Soc. 110, 2105 (1988). ( , D. Kost. http://dx.doi.org/10.1021/ja00215a016)
- 9. K. D. Organometallics 5, 2057 (1986). ( , W. J. Hehre. http://dx.doi.org/10.1021/om00141a021)
- 10. M. W. J. Am. Chem. Soc. 109, 5217 (1987). ( , P. N. Truong, M. S. Gordon. http://dx.doi.org/10.1021/ja00251a029)
- 11. H. G. J. Am. Chem. Soc. 103, 4483 (1981). ( , H. Trill, R. Sustmann. http://dx.doi.org/10.1021/ja00405a032)
- 12a. L. R. J. Chem. Phys. 68, 4202 (1978). ( , C. S. Hsu, D. J. Chandler. http://dx.doi.org/10.1063/1.436284)
- 12b. W. A. J. Phys. Chem. 99, 578 (1995). ( , B. J. van der Veken, A. Wang, J. R. Durig. http://dx.doi.org/10.1021/j100002a020)
- 13. J. I. J. Chem. Theory Comput. 8, 1280 (2012). ( , Y. Mo, P. v. R. Schleyer, I. Fernández. http://dx.doi.org/10.1021/ct3000553)
- 14. J. P. Tetrahedron 36, 3399 (1980). ( , G. Trinquier, J. C. Barthelat, J. P. Malrieu. http://dx.doi.org/10.1016/0040-4020(80)80190-6)
- 15. R. S. Tetrahedron 6, 68 (1959). ( . http://dx.doi.org/10.1016/0040-4020(59)80037-5)
- 16. P. Tetrahedron 32, 1357 (1976). ( , M. C. Trachtman, W. Bock, A. M. Brett. http://dx.doi.org/10.1016/0040-4020(76)85010-7)
- 17. D. J. Phys. Chem. A 112, 2131 (2008). ( , N. C. Craig, A. R. Matlin. http://dx.doi.org/10.1021/jp7097334)
- 18. Literature supporting more effective hyperconjugation in C–H than in C–C bonds.
- 18a. J. W. J. Chem. Soc. 1844 (1935). ( , W. S. Nathan. http://dx.doi.org/10.1039/jr9350001844)
- 18b. R. W. J. Tetrahedron 5, 210 (1959). ( , I. C. Lewis. http://dx.doi.org/10.1016/0040-4020(59)80107-1)
- 18c. B. T. Aust. J. Chem. 40, 1537 (1987). ( , D. A. R. Happer. http://dx.doi.org/10.1071/CH9871537)
- 18d. A. S. J. Am. Chem. Soc. 103, 4540 (1981); theoretical study. ( . http://dx.doi.org/10.1021/ja00405a041)
- 18e. P. R. J. Chem. Soc., Perkin Trans. 2 8, 1719 (1981). , R. W. Hoffmann, D. A. Hrovat, W. T. Borden.
- 18f. A. S. Chem. Rev. 99, 1265 (1999), and refs. therein. ( . http://dx.doi.org/10.1021/cr980381n)
- 19. For neutral and opposing views, see.
- 19a. W. M. J. Org. Chem. 21, 119 (1956) and refs. therein. ( , W. A. Sweeney. http://dx.doi.org/10.1021/jo01107a027)
- 19b. R. J. Am. Chem. Soc. 84, 4817 (1962). ( , G. G. Smith, W. H. Wetzel. http://dx.doi.org/10.1021/ja00883a037)
- 19c. M. Org. Biomol. Chem. 1, 3094 (2003). ( , J. M. White. http://dx.doi.org/10.1039/b303453d)
- 20a. W. J. J. Am. Chem. Soc. 92, 4796 (1970). ( , R. Ditchfield, L. Radom, J. A. Pople. http://dx.doi.org/10.1021/ja00719a006)
- 20b. L. J. Am. Chem. Soc. 93, 289 (1971); Isodesmic bond separation resonance equations offer the simplest way of estimating π conjugation energies in molecules based on experimental thermochemical data. Each of the bonds between the non-hydrogen atoms are separated into the simplest two-heavy atom fragments, e.g., ethane and ethene, while retaining their formal bond types. Although these isodesmic reactions involve minor CH and CC hybridization imbalances (on both sides of the equation), the effects are small and tend to cancel out, see also ref. [58] and (c): ( , W. J. Hehre, J. A. Pople. http://dx.doi.org/10.1021/ja00750a005)
- 20c. S. E. J. Am. Chem. Soc. 131, 2547 (2009). ( , K. N. Houk, P. v. R. Schleyer, W. D. Allen. http://dx.doi.org/10.1021/ja805843n)
- 21. K. S. J. Am. Chem. Soc. 68, 2209 (1946). ( , L. Guttman, E. F. Westrum Jr. http://dx.doi.org/10.1021/ja01215a028)
- 22a. S. J. Chem. Phys. 110, 2858 (1999). ( , T. Uchimaru, K. Matsumura, M. Mikami, K. Tanabe. http://dx.doi.org/10.1063/1.477928)
- 22b. A. J. Mol. Struct. 128, 59 (1985). ( , O. Bastiansen, L. Fernholt, B. N. Cyvin, S. J. Cyvin, S. Samdal. http://dx.doi.org/10.1016/0022-2860(85)85041-9)
- 22c. O. J. Mol. Struct. 128, 115 (1985). ( , S. Samdal. http://dx.doi.org/10.1016/0022-2860(85)85044-4)
- 22d. M. P. J. Chem. Theory Comput. 4, 1460 (2008); According to the classical explanation, planar biphenyl suffers from steric repulsion between the “bay” hydrogens, but this is disputed by subsequent QTAIM (quantum theory of atom in molecules) studies. ( , J. Olsen. http://dx.doi.org/10.1021/ct800182e)
- 22e. C. F. Chem.—Eur. J. 9, 1940 (2003); Based on QTAIM, a bond critical point indicative of “H–H bonding” is present between the bay H’s of planar biphenyl. Cf., support for classical viewpoint. ( , J. H. Trujillo, T. H. Tang, R. F. W. Bader. http://dx.doi.org/10.1002/chem.200204626)
- 22f. J. J. Org. Chem. 72, 1134 (2007). ( , R. Visser, M. Sola, F. M. Bickelhaupt. http://dx.doi.org/10.1021/jo061637p)
- 23a. C. H. J. Phys. Chem. A 101, 3823 (1997). ( , K. Miklos. http://dx.doi.org/10.1021/jp970620v)
- 23b. L. A. J. Chem. Phys. 63, 5283 (1975). ( , T. G. Towns. http://dx.doi.org/10.1063/1.431328)
- 23c. J. M. J. Mol. Spectrosc. 94, 437 (1982). ( , H. Musa, T. Ridley, P. H. Turner, K. H. Weisenberger, V. Fawcett. http://dx.doi.org/10.1016/0022-2852(82)90019-4)
- 23d. W. J. Mol. Spectrosc. 128, 384 (1988). ( , B. Vogelsanger, A. Bauder. http://dx.doi.org/10.1016/0022-2852(88)90155-5)
- 23e. S. J. Phys. Chem. 94, 6175 (1990). ( , K. Tanabe, E. Osawa. http://dx.doi.org/10.1021/j100379a008)
- 24a. Y. J. Phys. Chem. 109, 1687 (1998). , S. D. Peyerimhoff.
- 24b. Y. J. Phys. Chem. A 111, 8291 (2007). The BLW method evaluates the energetic consequence of π‑conjugation and hyperconjugation (electron delocalization energy = Ψloc – Ψdeloc) by comparing the computed energy of the target molecule (Ψdeloc, i.e., all electrons are free to delocalize) to the calculated energy of its artificial diabatic state (Ψloc), in which selected electron delocalization interactions are disabled. ( , L. Song, Y. Lin. http://dx.doi.org/10.1021/jp0724065)
- 25. I. V. J. Org. Chem. 65, 3910 (2000). The authors note that C–S bonds are good hyperconjugation donor and acceptors, but not S–C bonds. ( . http://dx.doi.org/10.1021/jo991622+)
- 26a. D. Chem. Rev. 105, 3758 (2005). ( , K. Hess, F. Köhler, R. Herges. http://dx.doi.org/10.1021/cr0300901)
- 26b. R. J. Phys. Chem. A 105, 3214 (2001). ( , D. Geuenich. http://dx.doi.org/10.1021/jp0034426)
- 27. I. Fernández. Private communication.
- 28. S. B. J. Phys. Chem. B 112, 8891 (2008). ( . http://dx.doi.org/10.1021/jp8017919)
- 29. P. Int. J. Quant. Chem. 50, 273 (1994). ( , J. S. Murray, J. M. Seminario. http://dx.doi.org/10.1002/qua.560500404)
- 30. R. W. A. Org. Lett. 8, 1255 (2006). ( , P. W. Fowler, L. W. Jenneskens. http://dx.doi.org/10.1021/ol052822c)
- 31a. H. E. J. Am. Chem. Soc. 88, 1564 (1966). ( . http://dx.doi.org/10.1021/ja00959a052)
- 31b. H. E. J. Am. Chem. Soc. 88, 1566 (1966). ( . http://dx.doi.org/10.1021/ja00959a053)
- 32. E. Tetrahedron Lett. 29, 1923 (1964). ( . http://dx.doi.org/10.1016/S0040-4039(01)89474-0)
- 33a. M. Mauksch. Dissertation, Universität Erlangen-Nürnberg (1999).
- 33b. M. Angew. Chem., Int. Ed. 37, 2395 (1998). ( , V. Gogonea, H. Jiao, P. v. R. Schleyer. http://dx.doi.org/10.1002/(SICI)1521-3773(19980918)37:17<2395::AID-ANIE2395>3.0.CO;2-W)
- 33c. G. Angew. Chem., Int. Ed. 48, 9971 (2009). ( , S. Grimme, R. Huenerbein, A. A. Auer, E. Mucke, F. Köhler, J. Siegwarth, R. Herges. http://dx.doi.org/10.1002/anie.200900886)
- 34. E. K. Org. Lett. 12, 1708 (2010). ( , F. Köhler, R. Herges. http://dx.doi.org/10.1021/ol1002384)
- 35. E. K. J. Org. Chem. 76, 35 (2011). ( , B. Schönborn, F. Köhler, R. Herges. http://dx.doi.org/10.1021/jo100798e)
- 36. C. Org. Lett. 4, 3431 (2002). ( , C. M. Isborn, W. L. Karney, M. Mauksch, P. v. R. Schleyer. http://dx.doi.org/10.1021/ol026610g)
- 37. C. S. J. Phys. Chem. A 113, 11619 (2009). ( , H. S. Rzepa, B. C. Rinderspacher, A. Paul, C. S. M. Allan, H. F. Schaefer III, P. v. R. Schleyer. http://dx.doi.org/10.1021/jp902176a)
- 38a. D. Nature 426, 819 (2003). ( , O. Oeckler, A. Simon, R. Herges. http://dx.doi.org/10.1038/nature02224)
- 38b. D. Chem.—Eur. J. 12, 5434 (2006). ( , K. Hess, F. Köhler, C. Näther, O. Oeckler, A. Simon, C. Yamamoto, Y. Okamoto, R. Herges. http://dx.doi.org/10.1002/chem.200600215)
- 38c. C. J. Am. Chem. Soc. 127, 2425 (2005). ( , Z. F. Chen, C. S. Wannere, H. Jiao, W. L. Karney, M. Mauksch, R. Puchta, N. J. R. v. E. Hommes, P. v. R. Schleyer. http://dx.doi.org/10.1021/ja0458165)
- 39. C. S. Angew. Chem., Int. Ed. 43, 4200 (2004). ( , K. W. Sattelmeyer, H. F. Schaefer III, P. v. R. Schleyer. http://dx.doi.org/10.1002/anie.200454188)
- 40. Although various ways of quantifying the strength of a chemical bond are available, “bond energies (BEs),” “bond dissociation energies,” and theoretical “in situ bond strengths” (cf. ref. [77]), are evaluated by different procedures and have very different chemical meanings. Bond energies are derived from atomization energies (AEs) assuming that these can be divided into contributions from all the individual two-center, two-electron chemical bonds. BEs can be obtained directly from experimental data only for molecules with a single bond type [e.g., diatomic molecules, methane (AE divided by 4), ammonia (AE divided by 3)]. Since ethane has two types of bonds (six equivalent CHs and one CC), additional assumptions or data are needed to derive the BEs. For example, if one assumes that the CH BEs of methane and of ethane are equal (as shown in ref. [42]), then the C–C BE of ethane is 79.0 kcal/mol (using the current CCCBDB-recommended experimental data, 298 K). Based on the same assumption, that the CH BEs of methane and of ethylene are equal, the C=C BE of the latter is 140.9 kcal/mol. It is commonly assumed (incorrectly, since the bond lengths are quite different, see ref. [44]) that the σ-CC component BE of ethylene equals the BE of ethane. On this basis, the π-bond energy of the ethylene π-CC component is 140.9 – 79.0 = 61.9 kcal/mol, a value that matches the ethylene rotational barrier reasonably well. If one assumes that, due to hybridization differences, the Csp2–H BE of ethylene is 2 kcal/mol larger than the Csp3–H BE of methane and ethane (see ref. [42]), then the C=C BE of ethylene is 132.9 kcal/mol, and the π-CC BE is even weaker (132.9 – 79.0 = 53.9 kcal/mol). Bond dissociation energies are the standard enthalpy change of homolytic bond cleavage, but this includes both the intrinsic BE of the cleaved bond and the reorganization energy of the dissociated fragments. Following the valence bond definition for a chemical bond, computed “in situ bond strengths” provide a “direct measure of the stabilization associated to the exchange of the two electrons in a covalent valence bond structure” “complemented by the resonance energy stabilization owing to the mixing of ionic structures” [77]. The three procedures described above differ drastically; e.g., the σ-C–C bond energy, bond dissociation energy, and in situ σ-bond strength, of ethane are: 79.0 kcal/mol (see above; or 86.6 kcal/mol in ref. [42]), 96.1 kcal/mol [77], and 138.5 kcal/mol [77], respectively. This discussion will be amplified in a separate paper.
- 41. Several ways to estimate two-way hyperconjugation in twisted ethylene are possible: i.e., based on the computed vertical BLW of triplet D2d ethylene (16.8 kcal/mol, HF/6-31G*, Y. Mo, private communication), and alternatively, by the rotational barrier of D2d triplet ethylene to its nearly planar C2v rotational TS (16.7 kcal/mol, see Fig. 2a and ref. [5]).
- 42. K. J. Phys. Chem. 105, 3407 (2001). ( , P. v. R. Schleyer. http://dx.doi.org/10.1021/jp004193o)
- 43. R. T. Sanderson. Polar Covalence, pp. 91–99, Academic Press (1983).
- 44. S. S. Russ. J. Gen. Chem. 74, 314 (2004). These authors also reported that compression of the diamond C–C bond from 1.54 to 1.34 Å weakened the C–C σ-bond by 20.6 kcal/mol. ( , L. I. Kozhevina. http://dx.doi.org/10.1023/B:RUGC.0000025528.22795.be)
- 45. C. A. Trans. Faraday Soc. 48, 293 (1952). ( , S. L. Altman. http://dx.doi.org/10.1039/tf9524800293)
- 46. R. S. J. Am. Chem. Soc. 63, 41 (1941). ( . http://dx.doi.org/10.1021/ja01846a008)
- 47. D. F. J. Am. Chem. Soc. 72, 5772 (1950). ( . http://dx.doi.org/10.1021/ja01168a528)
- 48. F. Weinhold, C. Landis. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective, p. 263, Cambridge University Press (2005).
- 49. K. B. Wiberg. “Strain, structure, stability and reactivity”, in Foundations of Chemistry, Vol. 6, pp. 65–80, Kluwer (2004).
- 50. A. Chem. Ber. 18, 2269 (1885). .
- 51a. K. S. Science 101, 672 (1945). ( . http://dx.doi.org/10.1126/science.101.2635.672)
- 51b. J. E. J. Am. Chem. Soc. 69, 2483 (1947). ( , K. S. Pitzer, R. Spitzer. http://dx.doi.org/10.1021/ja01202a069)
- 52. J. Struct. Chem. 5, 57 (1994). ( , G. Wlodarczak. http://dx.doi.org/10.1007/BF02278696)
- 52b. Y. J. Mol. Spectrosc. 126, 63 (1987). ( , M. C. Chiang, E. Hirota. http://dx.doi.org/10.1016/0022-2852(87)90076-2)
- 53. N. Chem. Rev. 93, 4219 (1993). ( , S. Benson. http://dx.doi.org/10.1021/cr00023a005)
- 54a. G. J. Janz. Estimation of Thermodynamic Properties of Organic Compounds, Academic Press, New York (1958).
- 54b. J. D. Cox, G. Pilcher. Thermochemistry of Organic and Organometallic Compounds, Academic Press, London (1970).
- 55. Rather than projecting the estimated angle strain of cyclopropane based on a 60º CCC ring angle, Cremer’s calculations were based on the computed interpath “bent bond” angle (78.8º, i.e., angle between the computed path of maximum electron density) of cyclopropane.
- 56. D. J. Am. Chem. Soc. 107, 3800 (1985). ( , E. Kraka http://dx.doi.org/10.1021/ja00299a009)
- 57. Earlier, Dewar had estimated the cyclopropane ring strain to be 55 kcal/mol too low, based on an extrapolation of the conventional strain energies of cyclohexane, cyclopentane, and cyclobutane. See also.
- 57a. M. J. S. J. Chem. Soc. 1625 (1954). ( , R. Pettit. http://dx.doi.org/10.1039/jr9540001625)
- 57b. M. J. S. Pure Appl. Chem. 52, 1431 (1980). ( , M. L. McKee. http://dx.doi.org/10.1351/pac198052061431)
- 58. M. D. Chem.—Eur. J. 13, 7731 (2007). Wodrich et al. proposed that the isodesmic bond separation equation (see ref. [10]) provided a more accurate assessment of the strain energy of cyclopropane compared to eq. 1, since the lack of protobranching in cyclopropane is taken into account. The bond separation equation suffers from minor hybridization imbalances, but these roughly cancel on opposite sides of the equation. ( , C. S. Wannere, Y. Mo, P. D. Jarowski, K. N. Houk, P. v. R. Schleyer. http://dx.doi.org/10.1002/chem.200700602)
- 59. P. v. R. J. Phys. Chem. A 114, 3737 (2010). ( , W. C. McKee. http://dx.doi.org/10.1021/jp909910f)
- 60a. S. J. Am. Chem. Soc. 113, 7144 (1991). ( , N. Goto, K. Yoshikawa. http://dx.doi.org/10.1021/ja00019a009)
- 60b. S. J. Am. Chem. Soc. 116, 5954 (1999). ( , Y. Ishitani, T. Kakefu. http://dx.doi.org/10.1021/ja00092a052)
- 61. M. Inorg. Chem. 35, 5378 (1996). ( , B. M. Gimarc. http://dx.doi.org/10.1021/ic9512439)
- 62. K. J. Phys. Chem. A 105, 3407 (2001). ( , P. v. R. Schleyer. http://dx.doi.org/10.1021/jp004193o)
- 63. J. D. J. Chem. Phys. 20, 1703 (1952). ( , V. Schomaker. http://dx.doi.org/10.1063/1.1700271)
- 64. P. v. R. Schleyer. In Proceedings of the NATO Advanced Research Workshop on “Substituent Effects in Radical Chemistry”, H. G. Viehe, Z. Janousek, R. Merenyi (Eds.), p. 69, Louvain-la-Neuve (1986).
- 65. J. D. Robert, M. C. Caserio. Basic Principles of Organic Chemistry, p. 113, Benjamin Press, New York (1964).
- 66. D. J. Am. Chem. Soc. 108, 7467 (1986). ( , J. Gauss. http://dx.doi.org/10.1021/ja00284a004)
- 67. W. Chem.—Eur. J. 15, 9730 (2009). ( , B. Ma, J. I. Wu, P. v. R. Schleyer, Y. Mo. http://dx.doi.org/10.1002/chem.200900586)
- 68. K. B. J. Am. Chem. Soc. 83, 1226 (1961). ( , B. J. Nist. http://dx.doi.org/10.1021/ja01466a048)
- 69a. J. J. J. Am. Chem. Soc. 86, 1870 (1964). ( , P. C. Lauterbur. http://dx.doi.org/10.1021/ja01063a055)
- 69b. P. D. J. Am. Chem. Soc. 103, 5569 (1983). ( , S. G. Kukolich, E. J. Campbell, W. G. Read. http://dx.doi.org/10.1021/ja00355a007)
- 70a. P. v. R. J. Am. Chem. Soc. 118, 6317 (1996). ( , C. Maerker, A. Dransfeld, H. Jiao, N. J. R. v. E. Hommes. http://dx.doi.org/10.1021/ja960582d)
- 70b. D. Org. Lett. 5, 23 (2003). ( , M. Manoharan, T. Heine, P. v. R. Schleyer. http://dx.doi.org/10.1021/ol027159w)
- 71. P. W. Theor. Chem. Acc. 118, 123 (2007). ( , J. Baker, M. Lillington. http://dx.doi.org/10.1007/s00214-007-0253-2)
- 72. S. J. Phys. Chem. A 111, 8163 (2007). ( , P. Lazzeretti, R. Zanasi. http://dx.doi.org/10.1021/jp0710638)
- 73. J. I. Wu. Dissertation, University of Georgia, Quantification of Virtual Chemical Properties: Strain, Hyperconjugation, Conjugation, and Aromaticity (2011).
- 74. I. Tetrahedron Lett. 51, 2920 (2010). ( . http://dx.doi.org/10.1016/j.tetlet.2010.03.108)
- 75. A. Chem. Rev. 100, 93 (2000) and refs. therein. ( , S. I. Kozhushkov. http://dx.doi.org/10.1021/cr960153y)
- 76. K. B. J. Am. Chem. Soc. 107, 7247 (1985). ( , W. P. Dailey, F. H. Walker, S. T. Waddell, L. S. Crocker, M. D. Newton. http://dx.doi.org/10.1021/ja00311a003)
- 77. W. Angew. Chem., Int. Ed. 48, 1407 (2009). ( , J. Gu, J. Song, S. Shaik, P. C. Hiberty. http://dx.doi.org/10.1002/anie.200804965)
- 78a. K. B. J. Am. Chem. Soc. 104, 5239 (1982). ( , F. H. Walker. http://dx.doi.org/10.1021/ja00383a046)
- 78b. J. Chem. Ber. 122, 397 (1989). ( , U. Bunz, K. Semmler, G. Szeimies, K. Opitz, A. D. Schlüter. http://dx.doi.org/10.1002/cber.19891220233)
- 79. J. D. J. Am. Chem. Soc. 101, 6814 (1979). ( , A. Greenberg, J. F. Liebman. http://dx.doi.org/10.1021/ja00517a005)
- 80. G. Angew. Chem., Int. Ed. Engl. 17, 276 (1978). The possible formation of C4Li4 was speculated and remains unverified. ( , T. Clark, D. Poppinger, P. v. R. Schleyer. http://dx.doi.org/10.1002/anie.197802762)
- 81. In ref. [80], the strain energies of tetrahedrane as well as the corner-lithiated (6) and face-lithiated (7) tetrahedranes were evaluated by the following equation: 4 (CH3)3CX → C4X4 + 6 C2H6, and are +195.5 kcal/mol, +67.1 kcal/mol (for 6), and +1.9 kcal/mol (for 7), respectively (RHF/STO3G).
- 82a. G. Angew. Chem., Int. Ed. Engl. 17, 520 (1978). ( , S. Pfriem, U. Schäfer, R. Matusch. http://dx.doi.org/10.1002/anie.197805201)
- 82b. G. Chem. Ber. 114, 3965 (1981). ( , S. Pfriem, U. Schäfer, K. D. Malsch, R. Matusch. http://dx.doi.org/10.1002/cber.19811141218)
- 83a. G. Angew. Chem., Int. Ed. 40, 1674 (2001). ( , J. Neudert, O. Wolf. http://dx.doi.org/10.1002/1521-3773(20010504)40:9<1674::AID-ANIE16740>3.0.CO;2-I)
- 83b. G. J. Am. Chem. Soc. 124, 13819 (2002). ( , J. Neudert, O. Wolf, D. Pappusch, A. Sekiguchi, M. Tanaka, T. Matsuo. http://dx.doi.org/10.1021/ja020863n)
- 84. A. J. Am. Chem. Soc. 125, 12684 (2003). ( , M. Tanaka. http://dx.doi.org/10.1021/ja030476t)
- 85. G. Pure Appl. Chem. 63, 275 (1991). ( . http://dx.doi.org/10.1351/pac199163020275)
- 86. R. Angew. Chem., Int. Ed. 40, 2251 (2001) and refs. therein. ( . http://dx.doi.org/10.1002/1521-3773(20010618)40:12<2251::AID-ANIE2251>3.0.CO;2-R)
- 87. P. D. J. Am. Chem. Soc. 61, 3184 (1939). ( , L. H. Knox. http://dx.doi.org/10.1021/ja01266a059)
- 88a. R. C. Adv. Acyclic Chem. 1, 284 (1966). Jr., P. v. R. Schleyer.
- 88b. R. C. J. Am. Chem. Soc. 92, 7558 (1970). ( Jr., R. E. Hornish, G. A. Liang. http://dx.doi.org/10.1021/ja00729a008)
- 88c. R. C. J. Am. Chem. Soc. 93, 3189 (1971). , P. v. R. Schleyer.
- 88d. L. J. J. Am. Chem. Soc. 94, 4628 (1972). ( , E. M. Engler, P. v. R. Schleyer. http://dx.doi.org/10.1021/ja00768a036)
- 89. R. C. J. Am. Chem. Soc. 93, 3189 (1971). , P. v. R. Schleyer.
- 90a. P. Chimia 38, 389 (1984). , J. Blanc, J. Mareda.
- 90b. P. J. Comp. Chem. 10, 863 (1989). Müller et al.’s more refined force field parameters correctly predicted the strain–reactivity relationships of the cubyl derivatives but not the bicyclo[n.1.1]alkyl halides. Also see. ( , J. Mareda. http://dx.doi.org/10.1002/jcc.540100702)
- 90c. J.-L. M. J. Org. Chem. 68, 3786 (2003). ( , I. Alkorta, J. Z. Davalos, P. Müller, E. Quintanilla, J.-C. Rossier. http://dx.doi.org/10.1021/jo026539s)
- 91. P. E. J. Am. Chem. Soc. 114, 3118 (1992). ( , J. P. Zhou. http://dx.doi.org/10.1021/ja00034a058)
- 92. K. B. J. Am. Chem. Soc. 85, 3188 (1963). ( , B. R. Lowry. http://dx.doi.org/10.1021/ja00903a031)
- 93. E. W. J. Org. Chem. 53, 4354 (1988). ( , P. M. W. Gill, C. H. Schiesser. http://dx.doi.org/10.1021/jo00253a030)
- 94. K. B. J. Am. Chem. Soc. 89, 373 (1967). , V. Z. Williams.
- 95. E. W. J. Chem. Soc., Chem. Commun. 883 (1987). , P. E. Pigou, J. Tsanaktsidis.
- 96. P. E. J. Am. Chem. Soc. 112, 3225 (1990). ( , C.-X. Yang, Y. Xiong. http://dx.doi.org/10.1021/ja00164a061)
- 97. I. Chem. Ber. 116, 360 (1983). ( , H. Langas, C. Rüchardt. http://dx.doi.org/10.1002/cber.19831160137)
- 98a. J. F. J. Am. Chem. Soc. 92, 1616 (1970). , S. H. Bauer.
- 98b. C. W. J. Mol. Spectrosc. 36, 34 (1970). ( , M. D. Harmony. http://dx.doi.org/10.1016/0022-2852(70)90122-0)
- 99. K. B. Tetrahedron 24, 1083 (1967). ( . http://dx.doi.org/10.1016/0040-4020(68)88057-3)
- 100. E. W. J. Am. Chem. Soc. 116, 6159 (1994). ( , C. A. Grob, D. K. Taylor. http://dx.doi.org/10.1021/ja00093a014)
- 101. R. M. J. Am. Chem. Soc. 112, 3228 (1990). ( , S. M. Tuladhar, R. Penmasta, A. K. Awasthi. http://dx.doi.org/10.1021/ja00164a063)
- 102. D. A. J. Am. Chem. Soc. 112, 3227 (1990). ( , W. T. Borden. http://dx.doi.org/10.1021/ja00164a062)
- 103. K. B. Wiberg, B. A. Hess Jr., A. A. Ashe III. In Carbonium Ions, Vol. III, G. A. Olah, P. v. R. Schleyer (Eds.), p. 1295, Wiley-Interscience, New York (1972).
- 104. K. B. J. Am. Chem. Soc. 114, 5820 (1992). ( , C. M. Hadad, S. Sieber, P. v. R. Schleyerrefs.refs., http://dx.doi.org/10.1021/ja00040a051)
- 105. D. E. J. Phys. Chem. A 109, 635 (2005). ( , A. M. Halpern, http://dx.doi.org/10.1021/jp0405097)
- 106. W. C. Org. Lett. 14, 5712 (2012). ( , J. I. Wu, M. Hofmann, A. Berndt, P. v. R. Schleyer. http://dx.doi.org/10.1021/ol302726c)
- 107. C. A. Coulson. Proceedings of the R. A. Welch Foundation Conferences on Chemical Research XVI, p. 117, R. A. Welch Foundation, Houston (1973).
- 108a. G. A. Acc. Chem. Res. 16, 440 (1983). ( , G. K. S. Prakash, M. Saunders. http://dx.doi.org/10.1021/ar00096a003)
- 108b. C. Acc. Chem. Res. 16, 448 (1983) and refs. therein. ( . http://dx.doi.org/10.1021/ar00096a004)
- 109. S. J. Am. Chem. Soc. 74, 1154 (1952). ( , D. Trifan. http://dx.doi.org/10.1021/ja01125a007)
- 110a. M. J. S. Ann. Rev. Phys. Chem. 16, 321 (1965). ( , A. P. Marchand. http://dx.doi.org/10.1146/annurev.pc.16.100165.001541)
- 110b. N. H. J. Mol. Struct. (Theochem) 463, 225 (1999). ( , H. M. Muchall. http://dx.doi.org/10.1016/S0166-1280(98)00625-3)
- 111a. H. Chem. Ber. 55, 2500 (1922). , K. V. Emster.
- 111b. P. D. J. Am. Chem. Soc. 59, 820 (1937). ( , I. Pockel. http://dx.doi.org/10.1021/ja01284a016)
- 112. S. J. Am. Chem. Soc. 71, 2953 (1949). ( , D. S. Trifan. http://dx.doi.org/10.1021/ja01176a536)
- 113a. H. C. Spec. Publ. Chem. Soc. 16, 140 (1962). .
- 113b. H. C. Brown. The Nonclassical Ion Problem, Plenum Press, New York (1977).
- 114. G. A. J. Am. Chem. Soc. 95, 6829 (1973). ( , G. Liang, P. v. R. Schleyer, E. M. Engler, M. J. S. Dewar, R. C. Bingham. http://dx.doi.org/10.1021/ja00801a051)
- 115a. P. v. R. J. Am. Chem. Soc. 86, 4195 (1964). ( , R. C. Fort Jr., W. E. Watts, M. B. Comisarow, G. A. Olah. http://dx.doi.org/10.1021/ja01073a058)
- 115b. G. A. J. Am. Chem. Soc. 107, 2764 (1985). ( , G. K. Prakash, G. Sipos, V. Buss, T. M. Gund, P. v. R. Schleyer. http://dx.doi.org/10.1021/ja00295a032)
- 115c. M. Angew. Chem., Int. Ed. Engl. 26, 761 (1987). ( , P. v. R. Schleyer, K. Schötz, M. Kausch, M. Schindler. http://dx.doi.org/10.1002/anie.198707611)
- 116. D. E. J. Am. Chem. Soc. 101, 6163 (1979). ( , S. Hirsl-Starcevic, S. K. Pollack, W. J. Hehre. http://dx.doi.org/10.1021/ja00515a002)
- 117. M. E. J. Phys. Chem. A 115, 2340 (2011). ( , J. Gauss, P. v. R. Schleyer. http://dx.doi.org/10.1021/jp1103356)