CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2008, Vol. 80, No. 11, pp. 2297-2308

Single-chain magnets constructed with a twisting arrangement of the easy-plane of iron(II) ions

Takashi Kajiwara, Hiroki Tanaka and Masahiro Yamashita

Graduate School of Science, Tohoku University and JST, Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan

Abstract: A novel class of single-chain magnets (SCMs), catena-[FeII(ClO4)2{FeIII(bpca)2}]ClO4 and its derivative, were synthesized using the spin-carrier components possessing hard-axis anisotropy (or easy-plane anisotropy, D > 0). The easy-axis-type anisotropy of whole molecules of these compounds, which is essential for the formation of SCMs, arises from the twisted arrangement of easy-planes of Fe(II) along the chain axis. Alternating high-spin Fe(II) and low-spin Fe(III) chain complexes behave as an SCM with a typical frequency-dependent ac susceptibility which obeys Arrhenius law. Below 7 K, catena-[FeII(ClO4)2{FeIII(bpca)2}]ClO4 showed a short-range spin-ordering even in zero external field in a time range of Mössbauer spectroscopy as well as the muon-spin-relaxation (μSR) spectroscopy. Since the easy-axis-type magnetic anisotropy originated from the structural motif of the twisting arrangement of Fe(II) ions, the overall magnetic property was very sensitive to the small structural changes arising from adsorption/desorption of the crystal solvents, and catena-[FeII(ClO4)2{FeIII(bpca)2}]ClO4 showed a reversible change in magnetism that has been referred to as "a magnetic sponge". In its derivative, controls of the molecular structure, the arrangement of chains in the crystal, and magnetic properties both in dc and ac susceptibility have been achieved by the introduction of methyl group on a bpca- ligand, which bridges and mediates the magnetic interaction of the adjoining Fe(II)/Fe(III) ions.