CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2007, Vol. 79, No. 6, pp. 955-968

Chemical parameters influencing fine-tuning in the binding of macrolide antibiotics to the ribosomal tunnel

Erez Pyetan, David Baram, Tamar Auerbach-Nevo and Ada Yonath

Department of Structural Biology, the Weizmann Institute of Science, 76100 Rehovot, Israel

Abstract: In comparison to existing structural, biochemical, and therapeutical data, the crystal structures of large ribosomal subunit from the eubacterial pathogen model Deinococcus radiodurans in complex with the 14-membered macrolides erythromycylamine, RU69874, and the 16-membered macrolide josamycin, highlighted the similarities and differences in macrolides binding to the ribosomal tunnel. The three compounds occupy the macrolide binding pocket with their desosamine or mycaminose aminosugar, the C4-C7 edge of the macrolactone ring and the cladinose sugar sharing similar positions and orientations, although the latter, known to be unnecessary for antibiotic activity, displays fewer contacts. The macrolactone ring displays altogether few contacts with the ribosome and can, therefore, tilt in order to optimize its interaction with the 23S rRNA. In addition to their contacts with nucleotides of domain V of the 23S RNA, erythromycylamine and RU69874 interact with domain II nucleotide U790, and RU69874 also reaches van der Waals distance from A752, in a fashion similar to that observed for the ketolides telithromycin and cethromycin. The variability in the sequences and consequently the diversity of the conformations of macrolide binding pockets in various bacterial species can explain the drug's altered level of effectiveness on different organisms and is thus an important factor in structure-based drug design.