Pure Appl. Chem., 2013, Vol. 85, No. 9, pp. 1901-1918
http://dx.doi.org/10.1351/PAC-REP-10-02-38
Published online 2013-08-28
PHYSICAL AND BIOPHYSICAL CHEMISTRY DIVISION
Assessment of theoretical methods for the study of hydrogen abstraction kinetics of global warming gas species during their degradation and byproduct formation (IUPAC Technical Report)
References
- 1. M. R. Science 41, 1441 (1988). ( . http://dx.doi.org/10.1126/science.241.4872.1441)
- 2. An M. Environ. Sci. Technol. 43, 1689 (2009). ( , K. W. Brakkee, M. J. Goedkoop, M. A. J. Huijbregts. http://dx.doi.org/10.1021/es800456m)
- 3. K. Ya. J. Climate 3, 662 (1990). ( . http://dx.doi.org/10.1175/1520-0442(1990)003<0662:EDOCGC>2.0.CO;2)
- 4. P. D. J. Clim. Appl. Meteorol. 25, 161 (1986). .
- 5. P. D. J. Clim. Appl. Meteorol. 25, 1213 (1986). .
- 6. W. S. Science 189, 460 (1975). ( . http://dx.doi.org/10.1126/science.189.4201.460)
- 7. T. J. Climate Change 61, 259 (2003). ( . http://dx.doi.org/10.1023/B:CLIM.0000004716.42148.85)
- 8. M. Forensic Sci. Int. 146, S207 (2004). ( , S. Vanin. http://dx.doi.org/10.1016/j.forsciint.2004.09.064)
- 9. C. D. Science 296, 2158 (2002). ( , C. E. Mitchell, J. R. Ward, S. Altizer, A. P. Dobson, R. S. Ostfeld, M. D. Samuel. http://dx.doi.org/10.1126/science.1063699)
- 10. T. C. Am. Econ. Rev. 82, 1 (1992). .
- 11. United Nations. Kyoto Protocol to the United Nations Framework Convention on Climate Change (1998). http://unfccc.int/kyoto_protocol/items/2830.php (accessed Aug. 2013).
- 12. S. R. Weart. In The Discovery of Global Warming (New Histories of Science, Technology, and Medicine), First Harvard University Press, USA (2004).
- 13. S. K. J. Geophys. Res. 108, 1200 (2003). ( , N. A. Krivova. http://dx.doi.org/10.1029/2002JA009753)
- 14. P. P. J. Phys. Chem. A 113, 12694 (2009). ( , J. S. Francisco, T. J. Lee. http://dx.doi.org/10.1021/jp905097g)
- 15. P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, R. Van Dorland. “Changes in atmospheric constituents and in radiative forcing”, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller (Eds.), Cambridge University Press, Cambridge (2007).
- 16. G. Atmos. Environ. 33, 4447 (1999). ( , C. J. Nielsen, D. L. Powell, F. Storda. http://dx.doi.org/10.1016/S1352-2310(99)00208-3)
- 17. D. A. Nature 344, 529 (1990). ( , D. R. Ahuja. http://dx.doi.org/10.1038/344529a0)
- 18. J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, K. Maskell (Eds.). In Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge (1996).
- 19. Climate report, Issue 97-1, Environment Canada, Spring (1997).
- 20. Climate report, Special issue, Environment Canada (1993).
- 21. M. S. J. Phys. Chem. 96, 7037 (1992). ( , M. S. Garrossian, S. T. Autrey, K. T. Ferris, J. A. Franz. http://dx.doi.org/10.1021/j100196a036)
- 22. D. M. J. Phys. Chem. 96, 7043 (1992). ( , R. Lesclaux, P. D. Lightfoot, K. Hughes, M. D. Hurley, S. Rudy, T. J. Wallington. http://dx.doi.org/10.1021/j100196a037)
- 23. F.-D. J. Phys. Chem. 98, 1171 (1994). ( , M. Remmler, H. Mensing, P. Hugo. http://dx.doi.org/10.1021/j100055a021)
- 24. J. A. J. Phys. Chem. 100, 7060 (1996). ( , W. Tsang. http://dx.doi.org/10.1021/jp9530109)
- 25. M. J. Annu. Rev. Phys. Chem. 47, 327 (1996). ( , L. T. Molina, C. E. Kolb. http://dx.doi.org/10.1146/annurev.physchem.47.1.327)
- 26. J. S. J. Phys. Chem. 101, 4172 (1997). ( , C. A. Taatjes. http://dx.doi.org/10.1021/jp970117i)
- 27. C. J. Phys. Chem. 102, 7938 (1998). ( , G. Buntinx, O. Poizat. http://dx.doi.org/10.1021/jp9816869)
- 28. W. S. J. Phys. Chem. A 108, 7247 (2004). ( , H. Kim, J. S. Francisco, S. W. North. http://dx.doi.org/10.1021/jp0311613)
- 29. IPCC. Climate Change 2007: Synthesis Report, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Team, R. K. Pachauri, A. Reisinger (Eds.), IPCC, Geneva (2007).
- 30. H. J. Phys. Chem. 97, 10035 (1993). ( , N. Hokari, H. Yoshida. http://dx.doi.org/10.1021/j100141a023)
- 31. K. D. J. Phys. Chem. 98, 12584 (1994). ( , D. A. Dixon. http://dx.doi.org/10.1021/j100099a021)
- 32. C. F. J. Am. Chem. Soc. 118, 2113 (1996). ( , P. Chen. http://dx.doi.org/10.1021/ja953493u)
- 33. A. J. Am. Chem. Soc. 119, 4021 (1997). ( , S. Kato. http://dx.doi.org/10.1021/ja9635342)
- 34. N. J. Phys. Chem. A 101, 926 (1997). ( , D. C. Kombo, R. Osman. http://dx.doi.org/10.1021/jp962021e)
- 35. H. J. Phys. Chem. A 101, 4416 (1997). ( , S. Hoz. http://dx.doi.org/10.1021/jp970011n)
- 36. M. J. Phys. Chem. A 102, 10074 (1998). ( , P. Marshall, R. J. Berry, C. J. Ehlers, G. A. Petersson. http://dx.doi.org/10.1021/jp9822891)
- 37. P. H. A. J. Phys. Chem. B 103, 10506 (1999). ( , P. J. A. Ruttink, B. H. W. S de Jong. http://dx.doi.org/10.1021/jp993213n)
- 38. T. J. Am. Chem. Soc. 122, 7821 (2000). ( , K. N. Houk. http://dx.doi.org/10.1021/ja000981f)
- 39. A. K. J. Phys. Chem. A 104, 8535 (2000). ( , T. Uchimaru. http://dx.doi.org/10.1021/jp000210y)
- 40. X. J. Phys. Chem. A 104, 8375 (2000). ( , Y.-H. Ding, Z.-S. Li, X.-R. Huang, C.-C. Sun. http://dx.doi.org/10.1021/jp001324c)
- 41. A. K. J. Phys. Chem. A 104, 9244 (2000). ( , T. Uchimaru. http://dx.doi.org/10.1021/jp001815x)
- 42. P.-Y. J. Phys. Chem. A 105, 2391 (2001). ( , R.-M. You, W.-P. Hu. http://dx.doi.org/10.1021/jp003260b)
- 43. S.-M. J. Phys. Chem. A 105, 3967 (2001). ( , X. Yu, Z.-F. Xu, Z.-S. Li, C.-C. Sun. http://dx.doi.org/10.1021/jp003460n)
- 44. X. J. Phys. Chem. A 105, 7072 (2001). ( , S.-M. Li, Z.-F. Xu, Z.-S. Li, C.-C Sun. http://dx.doi.org/10.1021/jp004087m)
- 45. J. L. J. Phys. Chem. A 105, 7875 (2001). ( , L. E. Ramírez-Arizmendi, K. K. Thoen, L. Guler, H. I. Kenttämaa. http://dx.doi.org/10.1021/jp0103676)
- 46. S. J. Phys. Chem. A 105, 8226 (2001). ( , W. Wu, K. Dong, L. Song, P. C. Hiberty. http://dx.doi.org/10.1021/jp011251c)
- 47. A. J. Phys. Chem. A 105, 10553 (2001). ( , J. M. Lluch, J. Espinosa-García. http://dx.doi.org/10.1021/jp012648j)
- 48. P. J. Am. Chem. Soc. 123, 10348 (2001). ( , J. A. Sordo. http://dx.doi.org/10.1021/ja011302j)
- 49. J.-F. J. Phys. Chem. A 106, 320 (2002). ( , Z.-S. Li, Y.-H. Ding, J.-Y. Liu, X.-R. Huang, C.-C. Sun. http://dx.doi.org/10.1021/jp013405u)
- 50. J. J. Phys. Chem. A 106, 5686 (2002). ( . http://dx.doi.org/10.1021/jp0145513)
- 51. J.-F. J. Phys. Chem. A 107, 267 (2003). ( , Z.-S. Li, J.-Y. Liu, L. Sheng, C.-C Sun. http://dx.doi.org/10.1021/jp021971z)
- 52. S. J. Phys. Chem. A 107, 1138 (2003). ( , T. N. Truong. http://dx.doi.org/10.1021/jp021265y)
- 53. S. H. J. Phys. Chem. A 107, 3752 (2003). ( , M. A. Namdar-Ghanbari, L. Sadeghian. http://dx.doi.org/10.1021/jp022291z)
- 54. T. G. Ind. Eng. Chem. Res. 42, 2461 (2003). ( , B. J. McCoy. http://dx.doi.org/10.1021/ie0205750)
- 55. K. D. J. Phys. Chem. A 108, 1138 (2004). ( , M. L. Coote. http://dx.doi.org/10.1021/jp048092s)
- 56. J. M. J. Am. Chem. Soc. 126, 9809 (2004). ( . http://dx.doi.org/10.1021/ja0481169)
- 57. M. J. Phys. Chem. A 109, 8158 (2005). ( , G. A. Parsafar. http://dx.doi.org/10.1021/jp0524173)
- 58. L. K. J. Phys. Chem. A 110, 473 (2006). ( , A. Ratkiewicz, T. N. Truong. http://dx.doi.org/10.1021/jp051280d)
- 59. K. J. Phys. Chem. A 110, 13624 (2006). ( , V. Van Speybroeck, D. Moran, G. B. Marin, L. Radom, M. Waroquier. http://dx.doi.org/10.1021/jp065141n)
- 60. N. C. J. Phys. Chem. A 111, 1117 (2007). ( , R. J. Correa, A. C. C. Albuquerque, C. L. Firme, S. J. Garden, A. R. Bertoti, J. C. Netto-Ferreira. http://dx.doi.org/10.1021/jp065675o)
- 61. L. K. J. Phys. Chem. A 111, 2156 (2007). ( , S. Panasewicz, A. Ratkiewicz, T. N. Truong. http://dx.doi.org/10.1021/jp066659u)
- 62. K. K. J. Phys. Chem. A 111, 6852 (2007). ( , J. S. Francisco. http://dx.doi.org/10.1021/jp071314c)
- 63. Y. J. Phys. Chem. A 111, 7761 (2007). ( , J.-Y. Liu, L. Yang, X.-L. Zhao, Y.-M. Ji, Z.-S. Li. http://dx.doi.org/10.1021/jp0704665)
- 64. M. J. Phys. Chem. A 111, 8095 (2007). ( , G. A. Parsafar. http://dx.doi.org/10.1021/jp072403s)
- 65. D. J. Phys. Chem. A 111, 10745 (2007). ( . http://dx.doi.org/10.1021/jp075174i)
- 66. C. R. J. Phys. Chem. A 112, 3239 (2008). ( , K. Sendt, B. A. Haynes. http://dx.doi.org/10.1021/jp710488d)
- 67. H. J. Phys. Chem. A 112, 4176 (2008). ( , Y. Wang, J.-Y Liu, L. Yang, Z.-S. Li, C.-C. Sun. http://dx.doi.org/10.1021/jp077611z)
- 68. L. J. Am. Chem. Soc. 130, 17697 (2008). ( , J. J. Nash, H. I. Kenttämaa. http://dx.doi.org/10.1021/ja801707p)
- 69. G. J. Phys. Chem. A 113, 8596 (2009). ( , J. W. Bozzelli, R. Asatryan. http://dx.doi.org/10.1021/jp904156r)
- 70. S. J. Phys. Chem. A 114, 4857 (2010). ( , H. G. Kjaergaard. http://dx.doi.org/10.1021/jp910202n)
- 71. J. J. Phys. Chem. A 114, 5558 (2010). ( , J. M. Simmie. http://dx.doi.org/10.1021/jp1009065)
- 72. A. Energy Fuels 24, 2857 (2010). ( , A. C. Buchanan III. http://dx.doi.org/10.1021/ef1001953)
- 73. P. J. Phys. Chem. Lett. 3, 264 (2012). ( , E. Papajak, D. G. Truhlar. http://dx.doi.org/10.1021/jz201546e)
- 74. S. Phys. Chem. Chem. Phys. 14, 2399 (2012). ( , N. Armata, J. S. Ogden, J. M. Dyke, L. Rhyman, P. Ramasami. http://dx.doi.org/10.1039/c2cp23392d)
- 75. L. J. Phys. Chem. A 116, 5595 (2012). ( , N. Armata, P. Ramasami, J. M. Dyke. http://dx.doi.org/10.1021/jp302750a)
- 76. S. J. Phys. Chem. A 99, 3438 (1995). , S. Tai, A. Esslinger, K. H. Illinger, J. E. Kenny.
- 77. M. H. Mitig. Adapt. Strat. Global Change 11, 1573 (2006). ( . http://dx.doi.org/10.1007/s11027-006-2166-0)
- 78. J. S. Comput. Theoret. Chem. 965, 248 (2011). ( . http://dx.doi.org/10.1016/j.comptc.2011.03.001)
- 79. D. A. J. Geophys. Res. 103, 181 (1998). ( , J. S. Francisco, A. K. Jain, D. J. Wuebbles. http://dx.doi.org/10.1029/98JD01880)
- 80. V. L. J. Phys. Chem. A 103, 9770 (1999). ( , E. Villenave, R. E. Huie, M. J. Kurylo. http://dx.doi.org/10.1021/jp991741t)
- 81. M. P. J. Phys. Chem. A 108, 1964 (2004). ( , M. D. Hurley, T. J. Wallington, F. Blandini, N. R. Jensen, V. Librando, J. Hjorth, G. Marchionni, M. Avataneo, M. Visca, F. M. Nicolaisen, O. J. Nielsen. http://dx.doi.org/10.1021/jp036615a)
- 82. T. J. J. Phys. Chem. A 108, 11333 (2004). ( , M. D. Hurley, O. J. Nielsen, M. P. S. Andersen. http://dx.doi.org/10.1021/jp046454q)
- 83. N. Environ. Sci. Technol. 38, 5567 (2004). ( , S. R. Sellevåg, C. J. Nielsen. http://dx.doi.org/10.1021/es0497330)
- 84. N. J. Phys. Chem. A 109, 337 (2005). ( , S. R. Sellevåg, C. J. Nielsen. http://dx.doi.org/10.1021/jp047860c)
- 85. M. P. J. Phys. Chem. A 109, 3926 (2005). ( , O. J. Nielsen, T. J. Wallington, M. D. Hurley, W. B. DeMore. http://dx.doi.org/10.1021/jp044635m)
- 86. C. J. Environ. Sci. Technol. 40, 2242 (2006). ( , M. D. Hurley, T. J. Wallington, S. A. Mabury. http://dx.doi.org/10.1021/es052077z)
- 87. P. Environ. Sci. Technol. 42, 1301 (2008). ( , D. M. Moline, K. F. Tetrault, R. R. Wheeler, S. L. Tuchawena. http://dx.doi.org/10.1021/es0706201)
- 88. M. J. C. Comput. Biol. Chem. 32, 311 (2008). ( . http://dx.doi.org/10.1016/j.compbiolchem.2008.04.001)
- 89. D. B. Environ. Sci. Technol. 43, 1055 (2009). ( , E. L. Atlas, D. R. Blake, N. J. Blake, G. S. Diskin, J. S. Holloway, R. C. Hudman, S. Meinardi, T. B. Ryerson, G. W. Sachse. http://dx.doi.org/10.1021/es802146j)
- 90. M. P. Environ. Sci. Technol. 43, 1067 (2009). ( , D. R. Blake, F. S. Rowland, M. D. Hurley, T. J. Wallington. http://dx.doi.org/10.1021/es802439f)
- 91. M. P. J. Phys. Chem. A 116, 5806 (2012). ( , O. J. Nielsen, B. Karpichev, T. J. Wallington, S. P. Sander. http://dx.doi.org/10.1021/jp2077598)
- 92. F. J. Phys. Chem. A 101, 1912 (1997). ( , A. Bottoni. http://dx.doi.org/10.1021/jp9620680)
- 93. D. D. J. Phys. Chem. A 101, 9327 (1997). ( , L. Zhang, P. Kandanarachchi. http://dx.doi.org/10.1021/jp971415i)
- 94. A. J. Phys. Chem. A 102, 10142 (1998). ( . http://dx.doi.org/10.1021/jp982166g)
- 95. P. M. J. Chem. Phys. 108, 604 (1998). ( , C. J. Parkinson, D. M. Smith, L. Radom. http://dx.doi.org/10.1063/1.476256)
- 96. X. Ind. Eng. Chem. Res. 40, 743 (2001). ( , H. H. Schobert. http://dx.doi.org/10.1021/ie0005811)
- 97. A. J. Phys. Chem. A 106, 9520 (2002). ( , J. R. Alvarez-Idaboy, M. E. Ruiz-Santoyo, A. Vivier-Bunge. http://dx.doi.org/10.1021/jp020297i)
- 98. X. Ind. Eng. Chem. Res. 42, 1151 (2003). ( , H. H. Schobert. http://dx.doi.org/10.1021/ie020556q)
- 99. M. L. J. Phys. Chem. A 108, 3865 (2004). ( . http://dx.doi.org/10.1021/jp049863v)
- 100. J. A. J. Phys. Chem. A 110, 589 (2006). ( , M.-L. Sánchez, J. C. Corchado. http://dx.doi.org/10.1021/jp052849d)
- 101. J. J. Phys. Chem. A 112, 7047 (2008). ( , H. J. Curran, W. Klopper, J. M. Simmie. http://dx.doi.org/10.1021/jp8012464)
- 102. T. J. Org. Chem. A 76, 4564 (2011). ( , K. Hirozumi, M. Harada, S. Hitaoka, H. Chuman. http://dx.doi.org/10.1021/jo200450p)
- 103. A. S. Phys. Chem. Chem. Phys. 14, 184 (2012). ( , J. N. Harvey. http://dx.doi.org/10.1039/c1cp21367a)
- 104. C. L. J. Phys.: Conf. Series 46, 220 (2006). ( , J. P. Kenny, I. M. B. Nielsen, M. Krishnan, V. Gurumoorthi, E. F. Valeev, T. L. Windus. http://dx.doi.org/10.1088/1742-6596/46/1/031)
- 105. K. B. Lipkowitz, D. B. Boyd. In Reviews in Computational Chemistry, K. B. Lipkowitz, D. B. Boyd (Eds.), p. ix, VCH, New York (1989).
- 106. N. L. Allinger, U. Burkert. Molecular Mechanics, American Chemical Society, Washington, DC (1982).
- 107. J. A. Pople, D. L. Beveridge. In Approximate Molecular Orbital Theory, McGraw Hill, New York (1970).
- 108. K. P. Lawley. Ab Initio Methods in Quantum Chemistry, John Wiley, Chichester (1987).
- 109. D. C. Young. Computational Chemistry, John Wiley, New York (2001).
- 110. E. Phys. Rev. 28, 1049 (1926). ( . http://dx.doi.org/10.1103/PhysRev.28.1049)
- 111. M. Born, K. Huang. In Dynamical Theory of Crystal Lattices, appendices VII and VIII, Oxford University Press, London (1954).
- 112. M. Ann. Phys. Leipzig 84, 457 (1927). ( , J. R. Oppenheimer. http://dx.doi.org/10.1002/andp.19273892002)
- 113. F. Z. Physik 36, 657 (1926). ( . http://dx.doi.org/10.1007/BF01400155)
- 114. E. Chem. Rev. 86, 681 (1986). ( , D. Feller. http://dx.doi.org/10.1021/cr00074a002)
- 115. R. S. Science 157, 13 (1967). ( . http://dx.doi.org/10.1126/science.157.3784.13)
- 116. P. Mol. Phys. 105, 3057 (2007). ( , J. L. Alonso. http://dx.doi.org/10.1080/00268970701757875)
- 117. J. C. Phys. Rev. 91, 528 (1953). ( . http://dx.doi.org/10.1103/PhysRev.91.528)
- 118. J. N. J. Phys. Chem. A 92, 4880 (1998). , D. L. Huestis, W. A. Goddard III.
- 119. D. D. Fitts. Principles of Quantum Mechanics, As Applied to Chemistry and Chemical Physics, Cambridge University Press, Cambridge (1999).
- 120. A. J. Chem. Theory Comput. 2, 306 (2006). ( , P. Serra. http://dx.doi.org/10.1021/ct0502662)
- 121. C. Phys. Rev. 46, 618 (1934). ( , M. S. Plesset. http://dx.doi.org/10.1103/PhysRev.46.618)
- 122. I. J. Phys. B: Atom. Mol. Phys. 7, 2441 (1974). ( . http://dx.doi.org/10.1088/0022-3700/7/18/010)
- 123. T. H. J. Phys. Chem. A 104, 9062 (2000). ( . http://dx.doi.org/10.1021/jp001507z)
- 124. G. L. Int. J. Quantum Chem. 99, 940 (2004). ( , M. Siegert, D. P. Turner. http://dx.doi.org/10.1002/qua.20142)
- 125. J. A. Int. J. Quantum. Chem. 14, 545 (1978). ( , R. Krishnan, H. B. Schlegel, J. S. Binkley. http://dx.doi.org/10.1002/qua.560140503)
- 126. R. J. Int. J. Quantum Chem. 14, 516 (1978). ( , G. D. Purvis. http://dx.doi.org/10.1002/qua.560140504)
- 127. J. Cizek. In Advances in Chemical Physics, Vol. 14, P. C. Hariharan (Ed.), Wiley-Interscience, New York (1969).
- 128. K. Chem. Phys. Lett. 157, 479 (1989). ( , G. W. Trucks, J. A. Pople, M. Head-Gordon. http://dx.doi.org/10.1016/S0009-2614(89)87395-6)
- 129. J. A. J. Chem. Phys. 87, 5968 (1987). ( , M. Head-Gordon, K. Raghavachari. http://dx.doi.org/10.1063/1.453520)
- 130. P. Phys. Rev. 136, B864 (1964). ( , W. Kohn. http://dx.doi.org/10.1103/PhysRev.136.B864)
- 131. W. Phys. Rev. 140, A1133 (1965). ( , L. J. Sham. http://dx.doi.org/10.1103/PhysRev.140.A1133)
- 132. R. G. Annu. Rev. Phys. Chem. 46, 701 (1995). ( , W. Yang. http://dx.doi.org/10.1146/annurev.pc.46.100195.003413)
- 133. A. D. J. Chem. Phys. 98, 5648 (1993). ( . http://dx.doi.org/10.1063/1.464913)
- 134. J. Chem. Phys. Lett. 237, 53 (1995). ( , J. Andzelm, M. Muir, P. R. Taylor. http://dx.doi.org/10.1016/0009-2614(95)00299-J)
- 135. J. L. Chem. Phys. Lett. 256, 595 (1996). ( . http://dx.doi.org/10.1016/0009-2614(96)00478-2)
- 136. Y. J. Phys. Chem. A 108, 2715 (2004). ( , B. J. Lynch, D. G. Truhlar. http://dx.doi.org/10.1021/jp049908s)
- 137. Y. J. Phys. Chem. A 108, 6908 (2004). ( , D. G. Truhlar. http://dx.doi.org/10.1021/jp048147q)
- 138. A. D. J. Chem. Phys. 121, 3405 (2005). ( , J. M. L. Martin. http://dx.doi.org/10.1063/1.1774975)
- 139. Y. Theor. Chem. Acc. 120, 215 (2008). ( , D. G. Truhlar. http://dx.doi.org/10.1007/s00214-007-0310-x)
- 140. S. E. J. Chem. Theory Comput. 6, 395 (2010). ( , K. N. Houk. http://dx.doi.org/10.1021/ct900639j)
- 141. J. A. J. Chem. Phys. 90, 5622 (1989). ( , M. Head-Gordon, D. J. Fox, K. Raghavachari, L. A. Curtiss. http://dx.doi.org/10.1063/1.456415)
- 142. L. A. J. Chem. Phys. 93, 2537 (1990). ( , C. Jones, G. W. Trucks, K. Raghavachari, J. A. Pople. http://dx.doi.org/10.1063/1.458892)
- 143. L. A. J. Chem. Phys. 94, 7221 (1991). ( , K. Raghavachari, G. W. Trucks, J. A. Pople. http://dx.doi.org/10.1063/1.460205)
- 144. L. A. J. Chem. Phys. 109, 7764 (1998). ( , K. Raghavachari, P. C. Redfern, V. Rassolov, J. A. Pople. http://dx.doi.org/10.1063/1.477422)
- 145. L. A. J. Chem. Phys. 126, 84108 (2007). ( , P. C. Redfern, K. Raghavachari. http://dx.doi.org/10.1063/1.2436888)
- 146. M. R. J. Chem. Phys. 75, 1843 (1981). ( , G. A. Petersson. http://dx.doi.org/10.1063/1.442208)
- 147. P. M. J. Chem. Phys. 108, 604 (1998). ( , C. J. Parkinson, D. M. Smith, L. Radom. http://dx.doi.org/10.1063/1.476256)
- 148. J. M. L. J. Chem. Phys. 111, 1843 (1999). ( , G. De Oliveira. http://dx.doi.org/10.1063/1.479454)
- 149. A. D. J. Chem. Phys. 120, 4129 (2004). ( , M. Oren, O. Atasoylu, J. M. L Martin, M. Kállay, J. Gauss. http://dx.doi.org/10.1063/1.1638736)
- 150. M. E. J. Chem. Phys. 128, 114111 (2008). ( , J. Vazquez, B. Ruscic, A. K. Wilson, J. Gauss, J. F. Stanton. http://dx.doi.org/10.1063/1.2835612)
- 151. B. J. Chem. Phys. 130, 234104 (2009). ( , G. T. Williams, L. Howard, A. K. Wilson. http://dx.doi.org/10.1063/1.3149387)
- 152. G. A. J. Phys. Chem. A 114, 8806 (2010). ( , A. K. Wilson. http://dx.doi.org/10.1021/jp1017949)
- 153. N. L. J. Chem. Phys. 106, 5143 (1997). ( , J. T. Fermann, W. D. Allen, H. F. Schaefer III. http://dx.doi.org/10.1063/1.473993)
- 154. A. G. J. Chem. Phys. 108, 9751 (1998). ( , W. D. Allen, H. F. Schaefer III. http://dx.doi.org/10.1063/1.476449)
- 155. A. G. J. Chem. Phys. 118, 10631 (2003). ( , M. L. Leininger, V. Szalay. http://dx.doi.org/10.1063/1.1573180)
- 156. R. M. J. Chem. Phys. 129, 164101 (2008). ( . http://dx.doi.org/10.1063/1.2997349)
- 157. R. M. J. Phys. Chem. A 113, 1012 (2009). ( . http://dx.doi.org/10.1021/jp809639s)
- 158. D. G. Truhlar, A. D. Issacson, B. C. Barrett. In Generalized Transition State Theory, Vol. 4 of Theory of Chemical Reaction Dynamics, p. 65, CRC Press, Boca Raton (1985).
- 159. M. J. Pilling, P. W. Seakins. In Reaction Kinetics, 2nd ed., Oxford Science, Oxford (1995).
- 160. P. R. P. J. Mol. Struct. (THEOCHEM) 197, 639 (2003). , A. F. A. Vilela, R. Gargano.
- 161. P. R. P. Int. J. Quantum Chem. 103, 685 (2005). ( , A. F. A. Vilela, R. Gargano. http://dx.doi.org/10.1002/qua.20581)
- 162. E. P. Z. Phys. Rev. Chem. Abt. B 19, 203 (1932). .
- 163. B. C. J. Phys. Chem. 83, 1079 (1979). , D. G. Truhlar.
- 164. R. T. J. Phys. Chem. 85, 3019 (1981). ( , D. G. Truhlar, B. C. Barrett. http://dx.doi.org/10.1021/j150621a001)
- 165. V. S. J. Chem. Phys. 99, 3542 (1993). ( , D. G. Truhlar. http://dx.doi.org/10.1063/1.466230)
- 166. J. R. Barker (Ed.). Progress and Problems in Atmospheric Chemistry, Advanced Series in Physical Chemistry 3, World Scientific, Singapore (1995).
- 167. K. J. Chem. Phys. 114, 5141 (2001). ( , M. G. Cory, R. J. Barlett. http://dx.doi.org/10.1063/1.1344890)
- 168. T. J. J. Phys. Chem. A 102, 1152 (1998). ( , A. Guschin, T. N. N. Stein, J. Platz, J. Sehested, L. K. Christensen, O. J. Nielsen. http://dx.doi.org/10.1021/jp972933w)
- 169. V. L. J. Phys. Chem. A 103, 9770 (1999). ( , E. Villenave, R. E. Huie, M. J. Kurylo. http://dx.doi.org/10.1021/jp991741t)
- 170. D. L. Atmos. Environ. 26A, 1331 (1992). , T. P. Cunningham, N. L. Allan, A. McCulloch.
- 171. D. A. J. Phys. Chem. A 103, 9230 (1999). ( , M. Kamboures, R. Santiano, J. S. Francisco. http://dx.doi.org/10.1021/jp991979h)
- 172. W. J. Phys. Chem. A 106, 6415 (2002). ( , R. Zhang, L. T. Molina, M. J. Molina. http://dx.doi.org/10.1021/jp025799a)
- 173. H. J. Theor. Chem. Acc. 125, 57 (2010). ( , B. K. Mishra, N. K. Gaur. http://dx.doi.org/10.1007/s00214-009-0659-0)
- 174. J. S. Acc. Chem. Res. 29, 391 (1996). ( , M. M. Maricq. http://dx.doi.org/10.1021/ar950114t)
- 175. G. D. Environ. Sci. Technol. 31, 327 (1997). ( , R. G. Derwent. http://dx.doi.org/10.1021/es950775l)
- 176. S. Res. Chem. Intermed. 35, 91 (2009). ( , H. Abe, T. Tanimura, Y. Yamasaki, K. Kanaori, K. Tajima. http://dx.doi.org/10.1007/s11164-008-0001-9)
- 177. A. K. Phys. Chem. Chem. Phys. 3, 3961 (2001). ( , T. Uchimaru, M. Sugie. http://dx.doi.org/10.1039/b104904f)
- 178. D. J. J. Phys. Chem. 97, 4683 (1993). ( , J. J. Treacy, H. W. Sidebottom, C. Balestra-Garcia, G. Laverdet, G. Le Bras, H. MacLeod, S. Teton. http://dx.doi.org/10.1021/j100120a021)
- 179. S. Ber. Bunsenges Phys. Chem. 93, 847 (1989). ( , L. A. Khachatryan, T. Berces. http://dx.doi.org/10.1002/bbpc.19890930806)
- 180. C. J. Phys. Chem. 96, 3312 (1992). ( , G. Le Bras, H. MacLeod. http://dx.doi.org/10.1021/j100187a026)
- 181. H. Phys. Chem. Chem. Phys. 3, 2353 (2001). ( , R. Zellner. http://dx.doi.org/10.1039/b009498f)
- 182. G. J. Fluorine Chem. 109, 113 (2001). ( , M. Causà, V. Gianotti, G. Marchionni. http://dx.doi.org/10.1016/S0022-1139(01)00366-9)
- 183. W. B. DeMore, W. B. Golden, D. M. Hampson, R. F. Howard, C. J. Kold, C. E. Kurylo, M. J. Molina, M. J. Ravishankara, A. R. Santer, S. Medeling. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, JPL Publication 94-26, Jet Propulsion Laboratory, California Institute of Technology, Pasadena (1994).
- 184. K. J. J. Phys. Chem. 99, 11141 (1995). ( , W. B. De More. http://dx.doi.org/10.1021/j100028a014)
- 185. N. L. J. Geophys. Res. 98, 23107 (1993). ( , I. J. Medhurst, H. H. Nelson. http://dx.doi.org/10.1029/93JD02550)
- 186. K. J. J. Phys. Chem. 99, 1235 (1995). ( , W. B. De More. http://dx.doi.org/10.1021/j100004a025)
- 187. L. J. Comput. Chem. 30, 565 (2008). ( , J.-Y. Liu, S.-Q. Wan, Z.-S. Li. http://dx.doi.org/10.1002/jcc.21079)
- 188. J. W. Environ. Sci. Technol. 40, 864 (2006). ( , D. A. Ellis, S. A. Mabury. http://dx.doi.org/10.1021/es051362f)
- 189. J. C. Environ. Sci. Technol. 40, 1862 (2006). ( , M. D. Hurley, T. J. Wallington, S. A. Mabury. http://dx.doi.org/10.1021/es0520767)
- 190. V. C. J. Phys. Chem. A 112, 1862 (2006). , R. W. Portmann, D. W. Fahey, J. Muhle, R. F. Weiss, J. B. Burkholder.
- 191. M. P. Environ. Sci. Technol. 43, 1067 (2009). ( , D. R. Blake, F. S. Rowland, M. D. Hurley, T. J. Wallington. http://dx.doi.org/10.1021/es802439f)
- 192. M. K. Mol. Simulat. 34, 1041 (2010). ( , J. Piechota. http://dx.doi.org/10.1080/08927020802258708)
- 193. W. Mol. Phys. 43, 1067 (2009). , C. Xiao, Q. Li, Y. Xie, H. F. Schaefer III.
- 194. P. J. Geophys. Res. 112, D15108 (2007). ( , D. M. Moline, K. F. Tetrault, R. R. Wheeler, S. L. Tuchawena. http://dx.doi.org/10.1029/2006JD008098)
- 195. S. J. Geophys. Res. 100, 23227 (1995). ( , M. D. Hurley, K. P. Shine, T. J. Wallington, T. J. Smyth. http://dx.doi.org/10.1029/95JD02323)
- 196. P. Ind. Eng. Chem. Res. 46, 6600 (2007). ( , K. F. Tetrault, Y. Trujillo-Morehead. http://dx.doi.org/10.1021/ie070724k)
- 197. S. W. Benson. In Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters, 2nd ed., John Wiley, New York (1976).
- 198. K. A. Int. J. Thermophys. 15, 821 (1994). ( . http://dx.doi.org/10.1007/BF01447097)
- 199. D. R. Fluid Phase Equilib. 81, 285 (1992). ( , K. A. Gillis, M. R. Moldover, G. Morrison, J. W. Schmidt. http://dx.doi.org/10.1016/0378-3812(92)85158-5)
- 200. J. J. Int. J. Thermophys. 18, 137 (1997). ( , J. W. Schmidt, K. A. Gillis. http://dx.doi.org/10.1007/BF02575204)
- 201. P. Theor. Chem. Acc. 119, 369 (2008). ( , K. F. Tetrault, Y. Trujillo-Morehead. http://dx.doi.org/10.1007/s00214-007-0394-3)
- 202. P. Environ. Sci. Technol. 42, 1301 (2008). ( , D. M. Moline, K. F. Tetrault, R. R. Wheeler, S. L. Tuchawena. http://dx.doi.org/10.1021/es0706201)
- 203. P. J. Phys. Chem. A 113, 5942 (2009). ( , K. Hollingshead. http://dx.doi.org/10.1021/jp8114918)
- 204. A. G. J. Phys. Chem. A 111, 11771 (2007). ( , M. K. Sabbe, M.-F. Reyniers, V. V. Speybroeck, M. Waroquier, G. B. Martin. http://dx.doi.org/10.1021/jp075132u)
- 205. I. J. Quant. Spectrosc. Radiat. Transfer 112, 1967 (2011). ( , G. Marston, D. R. Nutt, K. P. Shine. http://dx.doi.org/10.1016/j.jqsrt.2011.05.001)
- 206. I. J. Geophys. Res. 115, D24317 (2010). ( , A. Aranda, M. D. Hurley, G. Marston, D. R. Nutt, K. P. Shine, K. Smith, T. J. Wallington. http://dx.doi.org/10.1029/2010JD014771)
- 207. M. J. Phys. Chem. A 115, 10539 (2011). ( , A. R. Ravishankara, J. B. Burkholder. http://dx.doi.org/10.1021/jp206195g)
- 208. M. P. J. Phys. Chem. A 116, 5806 (2012). ( , O. J. Nielsen, B. Karpichev, T. J. Wallington, S. P. Sander. http://dx.doi.org/10.1021/jp2077598)
- 209. P. R. Atmos. Environ. 116, 5806 (2012). , R. A. Taccone, J. D. Nieto, P. M. Cometto, S. I. Lane.
- 210. D. E. Chem. Soc. Rev. 41, 6229 (2012). ( , A. Saiz-Lopez. http://dx.doi.org/10.1039/c2cs90076a)