Pure Appl. Chem., 2013, Vol. 85, No. 6, pp. 1089-1101
http://dx.doi.org/10.1351/PAC-CON-12-10-11
Published online 2013-04-10
The new world of organic reactions in water
References
- 1a. C.-J. Chem. Rev. 105, 3095 (2005). ( . http://dx.doi.org/10.1021/cr030009u)
- 1b. U. M. Lindstroem (Ed.). Organic Reactions in Water, Wiley-Blackwell, Oxford (2007).
- 1c. S. Kobayashi (Ed.). Water in Organic Synthesis (Science of Synthesis), Thieme, Stuttgart (2012).
- 2a. D. C. J. Am. Chem. Soc. 102, 7816 (1980). ( , R. Breslow. http://dx.doi.org/10.1021/ja00546a048)
- 2b. H. J. Am. Chem. Soc. 122, 11041 (2000). ( , T. Nakamura, H. Shinikubo, K. Oshima, K. Omoto, H. Fujimoto. http://dx.doi.org/10.1021/ja0014281)
- 2c. S. Angew. Chem., Int. Ed. 44, 3275 (2005). ( , J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb, K. B. Sharpless. http://dx.doi.org/10.1002/anie.200462883)
- 2d. L. Org. Lett. 13, 4153 (2011). ( , J. Pospech. http://dx.doi.org/10.1021/ol201563r)
- 2e. T. Org. Biomol. Chem. 10, 7134 (2012). ( , M. Sakai, M. Ueno, S. Kobayashi. http://dx.doi.org/10.1039/c2ob26264a)
- 3. S. Kobayashi. In Water in Organic Synthesis (Science of Synthesis), S. Kobayashi (Ed.), pp. 855–867, Thieme, Stuttgart (2012).
- 4. For general overview on allylic amination, see.
- 4a. S. A. Godleski. In Comprehensive Organic Synthesis, Vol. 4, B. M. Trost (Ed.), p. 585, Pergamon, Oxford (1991).
- 4b. M. Chem. Rev. 98, 1689 (1998). ( , K. A. Jørgensen. http://dx.doi.org/10.1021/cr970343o)
- 4c. B. M. Chem. Rev. 96, 395 (1996). ( , D. L. Van Vraken. http://dx.doi.org/10.1021/cr9409804)
- 4d. B. M. Chem. Pharm. Bull. 50, 1 (2002). ( . http://dx.doi.org/10.1248/cpb.50.1)
- 4e. B. M. Chem. Rev. 103, 2921 (2003). ( , M. L. Crawley. http://dx.doi.org/10.1021/cr020027w)
- 4f. H. Synlett 1641 (2005). , Y. Takemoto.
- 4g. Z. Angew. Chem., Int. Ed. 47, 258 (2008). ( , S. Ma. http://dx.doi.org/10.1002/anie.200605113)
- 5. Recently, growing attention has been paid to direct use of ammonia as a nitrogen source for organic synthesis, see.
- 5a. B. Angew. Chem., Int. Ed. 38, 2372 (1999). ( , J. Herwig, M. Beller. http://dx.doi.org/10.1002/(SICI)1521-3773(19990816)38:16<2372::AID-ANIE2372>3.0.CO;2-H)
- 5b. F. Tetrahedron Lett. 42, 3251 (2001). ( , D. Zewge, I. N. Houpis, R. P. Volante. http://dx.doi.org/10.1016/S0040-4039(01)00458-0)
- 5c. T. Org. Lett. 4, 2055 (2002). ( , A. M. Seayad, M. Ahmad, M. Beller. http://dx.doi.org/10.1021/ol0200605)
- 5d. B. Tetrahedron 60, 1463 (2004). ( , S. Bhattacharyya, J. S. Williamson. http://dx.doi.org/10.1016/j.tet.2003.12.024)
- 5e. B. Chem. Commun. 5551 (2005). ( , J. Tiburcio, A. N. Thadani. http://dx.doi.org/10.1039/b511411j)
- 5f. Q. J. Am. Chem. Soc. 128, 10028 (2006). ( , J. F. Hartwig. http://dx.doi.org/10.1021/ja064005t)
- 5g. D. S. J. Am. Chem. Soc. 129, 10354 (2007). ( , S. L. Buchwald. http://dx.doi.org/10.1021/ja074681a)
- 5h. M. J. Org. Lett. 9, 3949 (2007). ( , A. Leitner, D. J. Weix, S. Ueno, J. F. Hartwig. http://dx.doi.org/10.1021/ol701562p)
- 5i. C. Angew. Chem., Int. Ed. 47, 1477 (2008). ( , M. Ernst, F. van Laar, B. F. Sels, E. Schwab, D. E. De Vos. http://dx.doi.org/10.1002/anie.200704772)
- 5j. C. Angew. Chem., Int. Ed. 47, 8661 (2008). ( , D. Milstein. http://dx.doi.org/10.1002/anie.200803229)
- 5k. J. Chem. Commun. 3052 (2008). ( , S. Chang. http://dx.doi.org/10.1039/b804637a)
- 5l. N. Angew. Chem., Int. Ed. 48, 337 (2009). See also ref. [10]. ( , M. Taillefer. http://dx.doi.org/10.1002/anie.200802569)
- 6. Hartwig reported Ir-catalyzed allylic amination of methyl cinnamyl carbonate using a dioxane solution of ammonia gave the corresponding secondary amine exclusively, see ref. [2h]. After our first report (ref. [4]), his group reported the use of ammonia in enantioselective Ir-catalyzed monoallylation. M. J. J. Am. Chem. Soc. 131, 11312 (2009). ( , L. M. Stanley, J. F. Hartwig. http://dx.doi.org/10.1021/ja905059r)
- 7. T. J. Am. Chem. Soc. 131, 4200 (2009). ( , S. Kobayashi. http://dx.doi.org/10.1021/ja900328x)
- 8. B. M. J. Org. Chem. 44, 3451 (1979). ( , E. Keinan. http://dx.doi.org/10.1021/jo01334a001)
- 9. S. E. Tetrahedron Lett. 26, 1749 (1985). ( , R. Aslanian, J.-E. Bäckvall. http://dx.doi.org/10.1016/S0040-4039(00)98329-1)
- 10. Y. Bull. Chem. Soc. Jpn. 57, 3021 (1984). ( , M. Taguchi, M. Toyofuku, H. Hashimoto. http://dx.doi.org/10.1246/bcsj.57.3021)
- 11. R. D. J. Org. Chem. 53, 3845 (1988). ( , T. Rein, B. Åkermark, P. Helquist. http://dx.doi.org/10.1021/jo00251a035)
- 12. S.-I. J. Org. Chem. 54, 3292 (1989). ( , Y. Taniguchi, Y. Imada, Y. Tanigawa. http://dx.doi.org/10.1021/jo00275a011)
- 13. Recent examples, see.
- 13a. R. Angew. Chem., Int. Ed. 45, 5546 (2006). ( , O. Tverskoy, G. Helmchen. http://dx.doi.org/10.1002/anie.200601472)
- 13b. C. Angew. Chem., Int. Ed. 46, 3139 (2007). See also ref. [1b]. ( , M. A. Ariger, P. Moriel, E. M. Carreira. http://dx.doi.org/10.1002/anie.200700159)
- 14a. M. J. Am. Chem. Soc. 126, 7182 (2004). ( , K. Hirano, S. Kobayashi. http://dx.doi.org/10.1021/ja049689o)
- 14b. S. Chem. Commun. 104 (2005). ( , K. Hirano, M. Sugiura. http://dx.doi.org/10.1039/b415264f)
- 14c. M. Org. Synth. 83, 170 (2005). , K. Hirano, S. Kobayashi.
- 15. Unpublished.
- 16. D. J. Chem. Soc., Perkin Trans. 1 2840 (2001). ( , H. Tye, C. Eldred, N. W. Alcock, M. Wills. http://dx.doi.org/10.1039/b106399p)
- 17a. M. Chem. Lett. 241 (1996). ( , M. Yabuki, T. Yamagishi, K. Sakai, T. Tsubomura. http://dx.doi.org/10.1246/cl.1996.241)
- 17b. H. Synlett 385 (2001). , T. Taiji, T. Ohta, I. Furukawa.
- 18. X. J. Mol. Catal. 41, 245 (1987). , L. Lu, J. Sun.
- 19. S. Kobayashi. “The New World of Organic Chemistry Using Water as a Solvent”, presented at the 16th European Symposium on Organic Chemistry, Prague, 14 July 2009.
- 20a. K. Angew. Chem., Int. Ed. 51, 150 (2012); see also. ( , R. Shibuya, Y. Nakahara, N. Germain, T. Ohshima, K. Mashima. http://dx.doi.org/10.1002/anie.201106737)
- 20b. M. Org. Lett. 9, 3371 (2007). ( , Y. Miyamoto, J. Ipposhi, T. Ohshima, K. Mashima. http://dx.doi.org/10.1021/ol071365s)
- 21. A. Hosomi, K. Miura. In Comprehensive Organometallic Chemistry III, Vol. 9, P. Knochel (Ed.), p. 297, Elsevier, Oxford (2007).
- 22. A. Baba, I. Shibata, M. Yasuda. In Comprehensive Organometallic Chemistry III, Vol. 9, P. Knochel (Ed.), p. 341, Elsevier, Oxford (2007).
- 23. N. Miyaura, Y. Yamamoto. In Comprehensive Organometallic Chemistry III, Vol. 9, P. Knochel (Ed.), p. 145, Elsevier, Oxford (2007).
- 24. R. W. J. Org. Chem. 46, 1309 (1981). ( , H.-J. Zei. http://dx.doi.org/10.1021/jo00320a015)
- 25. R. W. Chem. Ber. 119, 1039 (1986). ( , B. Landmann. http://dx.doi.org/10.1002/cber.19861190324)
- 26a. J. W. J. Am. Chem. Soc. 124, 11586 (2002). ( , D. G. Hall. http://dx.doi.org/10.1021/ja027453j)
- 26b. T. J. Am. Chem. Soc. 124, 12414 (2002). ( , T. Ahiko, N. Miyaura. http://dx.doi.org/10.1021/ja0210345)
- 26c. D. G. Synlett 1644 (2007). ( . http://dx.doi.org/10.1055/s-2007-980384)
- 27. In the crotylboration of aldehydes, examples to provide 4-substituted homoallylic alcohols via γ‑addition-[3,3]-sigmatropic rearrangement were reported. P. V. Chem. Commun. 1988 (2005). ( , D. Pratihar, D. Biswas. http://dx.doi.org/10.1039/b418996e)
- 28. M. J. Am. Chem. Soc. 130, 2914 (2008). ( , T. Nagano, U. Schneider, T. Hamada, C. Ogawa, S. Kobayashi. http://dx.doi.org/10.1021/ja710627x)
- 29. S. Chem. Commun. 46, 1260 (2010). ( , T. Endo, U. Schneider, M. Ueno. http://dx.doi.org/10.1039/b924527h)
- 30a. T. Tetrahedron Lett. 30, 7037 (1989). ( , J.-R. Schwark, D. Hoppe. http://dx.doi.org/10.1016/S0040-4039(01)93417-3)
- 30b. J. A. J. Org. Chem. 60, 1920 (1995). ( , K. W. Hinkle. http://dx.doi.org/10.1021/jo00112a005)
- 30c. D. J. Tetrahedron: Asymmetry 6, 2575 (1995). ( , E. J. Thomas. http://dx.doi.org/10.1016/0957-4166(95)00337-O)
- 30d. G. W. Tetrahedron: Asymmetry 6, 2579 (1995). ( , D. J. Hallett, E. J. Thomas. http://dx.doi.org/10.1016/0957-4166(95)00338-P)
- 31. Crotylzinc·6c complex could be detected by ESI-mass analysis. In the reactions of crotylboronates with benzaldehyde, background (noncatalyzed) reactions seem to be faster. Boron-zinc transmetalation (from 5 to 9) may be slow due to steric reason. More details are under investigation.
- 32a. S. Angew. Chem., Int. Ed. 50, 12262 (2011); see also. ( , T. Endo, M. Ueno. http://dx.doi.org/10.1002/anie.201106433)
- 32b. S. J. Am. Chem. Soc. 126, 12236 (2004). ( , T. Hamada, K. Manabe, S. Kobayashi. http://dx.doi.org/10.1021/ja047896i)
- 32c. M. Chem. Lett. 38, 904 (2009). ( , T. Naito, S. Kobayashi. http://dx.doi.org/10.1246/cl.2009.904)
- 32d. M. Tetrahedron 66, 1111 (2010). ( , T. Naito, S. Kobayashi. http://dx.doi.org/10.1016/j.tet.2009.11.018)
- 33. The examples of catalytic, highly enantioselective allylation of aldehydes in aqueous media are very rare. Cf. S. Chirality 15, 124 (2003) and refs. cited therein. ( , N. Aoyama, K. Manabe. http://dx.doi.org/10.1002/chir.10154)
- 34. For the bipyridine chiral ligand, see.
- 34a. C. Angew. Chem., Int. Ed. 29, 205 (1990). , M. Zehnder, D. Bur.
- 34b. C. Chem. Ber. 125, 1169 (1992). ( , M. Ewald, M. Felder, G. Schlingloff. http://dx.doi.org/10.1002/cber.19921250528)
- 34c. S. Synthesis 2176 (2005). , T. Hamada, K. Manabe, S. Kobayashi.
- 35. Selected examples for the utility of the resulting tertiary homoallylic alcohols.
- 35a. S. J. Am. Chem. Soc. 128, 2210 (2006). ( , K. Hirano, H. Yorimitsu, K. Oshima. http://dx.doi.org/10.1021/ja058055u)
- 35b. P. J. Am. Chem. Soc. 128, 9642 (2006). ( , C. D. Incarvito, J. F. Hartwig. http://dx.doi.org/10.1021/ja063347w)
- 35c. T. J. Am. Chem. Soc. 128, 13366 (2006). ( , H. Furukawa, M. Suginome. http://dx.doi.org/10.1021/ja065588+)
- 36a. K. M. Angew. Chem., Int. Ed. 41, 3697 (2002). ( , J. Gavenonis, P. J. Walsh. http://dx.doi.org/10.1002/1521-3773(20021004)41:19<3697::AID-ANIE3697>3.0.CO;2-U)
- 36b. M. J. Am. Chem. Soc. 124, 13442 (2002); key reference for asymmetric In(III) catalysis. ( , K. Hirata, M. Nishino, A. Yamamoto, A. Baba. http://dx.doi.org/10.1021/ja0274047)
- 36c. J. Chem. Commun. 4217 (2005). ( , M.-L. Hong, S.-J. Ji, Y.-C. Teo, T.-P. Loh. http://dx.doi.org/10.1039/b507768k)
- 37a. S. J. Am. Chem. Soc. 124, 6536 (2002). ( , K. Fujii, R. Wada, M. Kanai, M. Shibasaki. http://dx.doi.org/10.1021/ja0262582)
- 37b. M. J. Am. Chem. Soc. 127, 14556 (2005); stoichiometric method. ( , H. Yamamoto. http://dx.doi.org/10.1021/ja0553351)
- 37c. N. Z. Angew. Chem., Int. Ed. 45, 3811 (2006). ( , B. M. Hackman, P. Y. Ng, I. A. Powelson, J. L. Leighton. http://dx.doi.org/10.1002/anie.200600910)
- 38a. R. J. Am. Chem. Soc. 126, 8910 (2004). ( , K. Oisaki, M. Kanai, M. Shibasaki. http://dx.doi.org/10.1021/ja047200l)
- 38b. S. J. Am. Chem. Soc. 128, 12660 (2006). ( , P. N. Moquist, S. E. Schaus. http://dx.doi.org/10.1021/ja0651308)
- 39. J. J. J. Am. Chem. Soc. 129, 2752 (2007). ( , M. S. Sigman. http://dx.doi.org/10.1021/ja068915m)
- 40. Reviews on the stoichiometric use of In(0).
- 40a. B. C. Eur. J. Org. Chem. 2347 (2000). ( . http://dx.doi.org/10.1002/1099-0690(200007)2000:13<2347::AID-EJOC2347>3.0.CO;2-X)
- 40b. V. Tetrahedron 60, 1959 (2004). ( , S. Ros, C. N. Jayan, B. S. Pillai. http://dx.doi.org/10.1016/j.tet.2003.12.037)
- 41. Indium has been defined as a rare metal; thus, catalysis is important: J. Emsley (Ed.). The Elements, 3rd ed., Oxford Press, Oxford (1998).
- 42. Selected examples for allylindium reagents.
- 42a. T. H. J. Am. Chem. Soc. 121, 3228 (1999). ( , Y. Yang. http://dx.doi.org/10.1021/ja984359n)
- 42b. J. G. J. Chem. Soc., Perkin Trans. 1 1314 (2002). , K. I. Choi, A. N. Pae, H. Y. Koh, Y. Kang, Y. S. Cho.
- 42c. G. Org. Biomol. Chem. 3, 1375 (2005). ( , A. Lubineau, M.-C. Scherrmann. http://dx.doi.org/10.1039/b419231c)
- 43. Reformatsky-type reagents: S. A. Org. Lett. 6, 4475 (2004). ( , M. Yasuda, I. Shibata, A. Baba. http://dx.doi.org/10.1021/ol0482846)
- 44. Selected examples for alkyl radical reagents: Account.
- 44a. H. Org. Biomol. Chem. 2, 1267 (2004). ( , T. Naito. http://dx.doi.org/10.1039/b316787a)
- 44b. Z.-L. Org. Lett. 9, 5413 (2007). ( , T.-P. Loh. http://dx.doi.org/10.1021/ol702263b)
- 45. U. J. Am. Chem. Soc. 130, 13824 (2008). ( , M. Ueno, S. Kobayashi. http://dx.doi.org/10.1021/ja804182j)
- 46. In contrast, In(III) complexes are commonly used in catalytic quantities as Lewis acid catalysts: see ref. [28c].
- 47. Catalytic use of In(0) for the preparation of “allylgallium” from allyl bromide.
- 47a. K. Org. Lett. 4, 1727 (2002). ( , Y. Ikawa. http://dx.doi.org/10.1021/ol025784v)
- 47b. K. Chem. Lett. 172 (2002). ( , Y. Ikawa, K. Ishii, M. Kumanda. http://dx.doi.org/10.1246/cl.2002.172)
- 48a. U. Angew. Chem., Int. Ed. 46, 5909 (2007). ( , S. Kobayashi. http://dx.doi.org/10.1002/anie.200700899)
- 48b. U. Org. Lett. 10, 737 (2008). ( , I.-H. Chen, S. Kobayashi. http://dx.doi.org/10.1021/ol702756k)
- 48c. S. Chem. Commun. 2313 (2008); application of our In(I) catalysis. ( , H. Konishi, U. Schneider. http://dx.doi.org/10.1039/b802153h)
- 48d. N. J. Am. Chem. Soc. 129, 13723 (2007); review on low oxidation state In. ( , A. Kipke, S. Sebelius, K. J. Szabó. http://dx.doi.org/10.1021/ja074917a)
- 48e. J. A. J. Chem. Rev. 107, 2 (2007) and refs. cited herein. ( , A. Downs. http://dx.doi.org/10.1021/cr068027+)
- 49. Optimized conditions: 1 (0.5 mmol), 2 (1.5 equiv), In(0) (3 mol %), H2O (1 m), 30 °C, 24 h. Gallium(0) as a catalyst proved to be much less effective (low yield); the use of allylsilanes did not give any reaction.
- 50. Single electron transfer (SET) might be facilitated by the low first ionization enthalpy of In (558.3 kj/mol): http://www.webelements.com.
- 51. Account on Lewis and Brønsted acid-catalyzed allylboration of carbonyl compounds: D. G. Synlett 1644 (2007) and refs. cited herein. ( . http://dx.doi.org/10.1055/s-2007-980384)