Pure Appl. Chem., 2013, Vol. 85, No. 4, pp. 649-659
http://dx.doi.org/10.1351/PAC-CON-12-08-04
Published online 2012-12-29
Multiple bonds between lead atoms and short bonds between transition metals
References
- 1. For a recent review, see: R. C. Chem. Rev. 110, 3877 (2010). ( , P. P. Power. http://dx.doi.org/10.1021/cr100133q)
- 2. A. Science 305, 1755 (2004). ( , R. Kinjo, M. Ichinohe. http://dx.doi.org/10.1126/science.1102209)
- 3a. T. J. Am. Chem. Soc. 130, 13856 (2008). ( , K. Hironaka, Y. Sugiyama, N. Takagi, S. Nagase, Y. Hosoi, Y. Furukawa, N. Tokitoh. http://dx.doi.org/10.1021/ja8061002)
- 3b. T. Pure Appl. Chem. 82, 603 (2010). ( , J. S. Han, K. Hironaka, N. Takagi, S. Nagase, N. Tokitoh. http://dx.doi.org/10.1351/PAC-CON-09-08-02)
- 4a. M. Angew. Chem., Int. Ed. 41, 1785 (2002). ( , A. D. Phillips, R. J. Wright, P. P. Power. http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1785::AID-ANIE1785>3.0.CO;2-6)
- 4b. L. J. Am. Chem. Soc. 125, 11626 (2003). ( , A. D. Phillips, A. F. Richards, M. Stender, R. S. Simons, M. M. Olmstead, P. P. Power. http://dx.doi.org/10.1021/ja035711m)
- 5. Y. J. Am. Chem. Soc. 128, 1023 (2006). ( , T. Sasamori, Y. Hosoi, Y. Furukawa, N. Takagi, S. Nagase, N. Tokitoh. http://dx.doi.org/10.1021/ja057205y)
- 6. A. D. J. Am. Chem. Soc. 124, 5930 (2002). ( , R. J. Wright, M. M. Olmstead, P. P. Power. http://dx.doi.org/10.1021/ja0257164)
- 7. L. J. Am. Chem. Soc. 122, 3524 (2000). ( , B. Twamley, P. P. Power. http://dx.doi.org/10.1021/ja993346m)
- 8a. K. Organometallics 16, 2489 (1997). ( , S. Nagase. http://dx.doi.org/10.1021/om970232f)
- 8b. S. J. Organomet. Chem. 611, 264 (2000). ( , K. Kobayashi, N. Takagi. http://dx.doi.org/10.1016/S0022-328X(00)00489-7)
- 8c. K. Organometallics 20, 234 (2001). ( , N. Takagi, S. Nagase. http://dx.doi.org/10.1021/om000824p)
- 8d. N. Organometallics 20, 5498 (2001). ( , S. Nagase. http://dx.doi.org/10.1021/om010669u)
- 8e. N. Chem. Lett. 966 (2001). ( , S. Nagase. http://dx.doi.org/10.1246/cl.2001.966)
- 8f. N. Eur. J. Inorg. Chem. 2775 (2002). ( , S. Nagase. http://dx.doi.org/10.1002/1099-0682(200211)2002:11<2775::AID-EJIC2775>3.0.CO;2-D)
- 8g. N. J. Organomet. Chem. 692, 217 (2007). ( , S. Nagase. http://dx.doi.org/10.1016/j.jorganchem.2006.08.089)
- 9. Stabilization of REER due to trans-bending is ascribed to the mixing of the low-lying vacant σ* orbital into the in-plane πin orbital, known as a second-order Jahn–Teller effect. The mixing of the antibonding σ* orbital is enhanced, as the E atom becomes heavier. It makes the bonding πin orbital slipped and weakened.
- 10a. Y. Angew. Chem., Int. Ed. 40, 2052 (2001); for a theoretical study of two trans-bent forms of RPbPbR, see also. , M. Hartmann, M. Diedenhofen, G. Frenking.
- 10b. M. J. Am. Chem. Soc. 127, 6290 (2005). ( , A. Krapp, G. Frenking. http://dx.doi.org/10.1021/ja042295c)
- 11. Bond order is often discussed to characterize bond multiplicity and strength, though it is an artificial index. Because the two dative bonds in mode a are weak, the Pb–Pb bond order is less than three. However, we prefer to call the Pb–Pb bond a triple bond, because there are three bonds between the Pb atoms. Bond order is not always correlated to bond strength, unlike the carbon cases.
- 12. N. Organometallics 26, 3627 (2007). ( , S. Nagase. http://dx.doi.org/10.1021/om700388b)
- 13. It should be described that the energy of the triply bonded structure of Ar*PbPbAr* is not sensitive to the dihedral angle (ω). For example, the structure optimized by fixing the angle at ω = 140º is only 0.7 kcal/mol less stable than the fully optimized structure (ω = 119.8º). The two absorptions of 420 and 752 nm calculated for ω = 140º are closer to the experimental values of 397 and 719 nm.
- 14a. K. W. Angew. Chem., Int. Ed. 37, 124 (1998). ( , T. F. Fässler, H. Grützmacher. http://dx.doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<124::AID-ANIE124>3.0.CO;2-C)
- 14b. M. Organometallics 17, 4425 (1998). ( , M. Weidenbruch, K. W. Klinkhammer, F. Lissner, H. Marsmann. http://dx.doi.org/10.1021/om9804475)
- 14c. M. Angew. Chem., Int. Ed. 38, 187 (1999). ( , W. Saak, H. Marsmann, M. Weidenbruch. http://dx.doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<187::AID-ANIE187>3.0.CO;2-2)
- 14d. M. Eur. J. Inorg. Chem. 579 (1999). ( , W. Saak, M. Weidenbruch, K. W. Klinkhammer. http://dx.doi.org/10.1002/(SICI)1099-0682(199904)1999:4<579::AID-EJIC579>3.0.CO;2-E)
- 14e. K. Polyhedron 587 (2002). ( . http://dx.doi.org/10.1016/S0277-5387(01)01029-4)
- 14f. S. Inorg. Chem. 43, 7346 (2004). ( , M. Olmstead, A. D. Phillips, R. J. Wright, P. P. Power. http://dx.doi.org/10.1021/ic049174y)
- 15. N. Organometallics 26, 469 (2007). ( , S. Nagase. http://dx.doi.org/10.1021/om060993v)
- 16. R. C. J. Am. Chem. Soc. 128, 11366 (2006). ( , L. Pu, J. C. Fettinger, M. A. Brynda, P. P. Power. http://dx.doi.org/10.1021/ja0637090)
- 17. For other examples, see: Y. Chem. Sci. 1, 461 (2010). ( , R. C. Fischer, W. A. Merrill, J. Fischer, L. Pu, B. D. Ellis, J. C. Fettinger, R. H. Herber, P. P. Power. http://dx.doi.org/10.1039/c0sc00240b)
- 18. For recent reviews, see.
- 18a. Y. Inorg. Chem. 50, 12326 (2011). ( , G. H. Robinson. http://dx.doi.org/10.1021/ic200675u)
- 18b. Y. Dalton Trans. 41, 337 (2012). ( , G. H. Robinson. http://dx.doi.org/10.1039/c1dt11165e)
- 19. Y. Science 321, 1069 (2008). ( , Y. Xie, P. Wei, R. B. King, H. F. Schaefer III, P. v. R. Schleyer, G. H. Robinson. http://dx.doi.org/10.1126/science.1160768)
- 20. A. Angew. Chem., Int. Ed. 48, 9701 (2009). ( , C. Jones, A. Stasch, S. Klein, G. Frenking. http://dx.doi.org/10.1002/anie.200905495)
- 21. For the P2 case, see.
- 21a. Y. J. Am. Chem. Soc. 130, 14970 (2008); ( , Y. Xie, P. Wei, R. B. King, H. F. Schaefer III, P. v. R. Schleyer, G. H. Robinson. http://dx.doi.org/10.1021/ja807828t)
- 21b. for the As2 case, see: M. Y. Chem.—Eur. J. 16, 432 (2010); ( , Y. Wang, Y. Xie, P. Wei, H. F. Schaefer III, P. v. R. Schleyer, G. H. Robinson. http://dx.doi.org/10.1002/chem.200902840)
- 21c. for the B2 case, see: H. Science 336, 1420 (2012). ( , R. D. Dewhurst, K. Hammond, J. Mies, K. Radacki, A. Vargas. http://dx.doi.org/10.1126/science.1221138)
- 21d. N. Chem.—Eur. J. 17, 13517 (2011). ( , A. Stasch, C. Jones, G. Frenking. http://dx.doi.org/10.1002/chem.201101915)
- 22. The size difference between valence s and p orbitals becomes the largest for the heaviest Pb atom [8b]. Therefore, the Pb atom is most reluctant to form hybrid orbitals. It should be noted in Fig. 5b that no hybrid orbital is required for the Pb atom.
- 23. C. A. Science 321, 1050 (2008). ( , G. Bertrand. http://dx.doi.org/10.1126/science.1162926)
- 24. For the linear structure, hybrid orbitals are required for the Pb atom.
- 25. The Pb2 molecule has the triplet ground state (3Σg–), as do Si2 and Ge2. For the interaction shown in Fig. 5b, Pb2 must be excited to the singlet state (1∆g).
- 26. H. J. Am. Chem. Soc. 132, 17399 (2010). ( , J.-D. Guo, J. C. Fettinger, S. Nagase, P. P. Power. http://dx.doi.org/10.1021/ja1089777)
- 27. For a highlight article, see: P. L. Angew. Chem., Int. Ed. 50, 6213 (2011). ( . http://dx.doi.org/10.1002/anie.201101209)
- 28. Dissociation on the quintet potential energy surface, which leads to excited sextet R*Fe and ground doublet Fe(η5-C5H5)(CO)2 states, is 59.3 kcal/mol endothermic.
- 29a. F. A. Inorg. Chim. Acta 256, 269 (1997). ( , L. M. Daniels, L. R. Falvello, J. H. Matonic, C. A. Murillo. http://dx.doi.org/10.1016/S0020-1693(96)05469-2)
- 29b. F. A. Inorg. Chim. Acta 256, 277 (1997); ( , L. M. Daniels, J. H. Matonic, C. A. Murillo. http://dx.doi.org/10.1016/S0020-1693(96)05470-9)
- 29c. for a significantly shorter Fe–Fe bond distance of 2.127 Å reported recently, see: L. Angew. Chem., Int. Ed. 51, 8294 (2012). ( , S. Liu, C. Schulten, B. Moubaraki, A. Stasch, J. D. Cashion, K. S. Murray, L. Gagliardi, C. Jones. http://dx.doi.org/10.1002/anie.201203711)
- 30. T. Kuwabara, M. Saito, J.-D. Guo, S. Nagase. Unpublished results.
- 31. T. Organometallics 22, 3855 (2003). ( , M. Amako, H. Suzuki. http://dx.doi.org/10.1021/om030429+)
- 32. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 09 (Revision A.01), Gaussian, Inc., Wallingford, CT (2009).
- 33a. A. D. Phys. Rev. A 38, 3098 (1988). ( . http://dx.doi.org/10.1103/PhysRevA.38.3098)
- 33b. A. D. J. Chem. Phys. 98, 5648 (1933). ( . http://dx.doi.org/10.1063/1.464913)
- 34. C. Phys. Rev. B 37, 785 (1988). ( , W. Wang, R. G. Parr. http://dx.doi.org/10.1103/PhysRevB.37.785)
- 35a. W. R. J. Chem. Phys. 82, 284 (1985). ( , P. J. Hay. http://dx.doi.org/10.1063/1.448800)
- 35b. P. J. J. Chem. Phys. 82, 299 (1985). ( , W. R. Wadt. http://dx.doi.org/10.1063/1.448975)
- 36. M. N. J. Chem. Phys. 77, 3654 (1982). ( , W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees, J. A. Pople. http://dx.doi.org/10.1063/1.444267)
- 37. J. P. Phys. Rev. B 45, 13244 (1922). ( , Y. Wang. http://dx.doi.org/10.1103/PhysRevB.45.13244)