Pure Appl. Chem., 2013, Vol. 85, No. 1, pp. 159-199
http://dx.doi.org/10.1351/PAC-CON-12-06-03
Published online 2013-01-04
Multiscale modeling of solvation in chemical and biological nanosystems and in nanoporous materials
References
- 1. J.-P. Hansen, I. McDonald. Theory of Simple Liquids, 3rd ed., Elsevier, Amsterdam (2006).
- 2. F. Hirata (Ed.). Molecular Theory of Solvation, Series: Understanding Chemical Reactivity, P. G. Mezey (Ed.), Vol. 24, p. 360, Kluwer Academic, Dordrecht (2003).
- 3. D. J. Chem. Phys. 85, 5971 (1986). ( , J. McCoy, S. Singer. http://dx.doi.org/10.1063/1.451510)
- 4. D. J. Chem. Phys. 85, 5977 (1986). ( , J. McCoy, S. Singer. http://dx.doi.org/10.1063/1.451511)
- 5. D. J. Chem. Phys. 103, 360 (1995). ( , B. Roux. http://dx.doi.org/10.1063/1.469602)
- 6. D. J. Phys. Chem. B 101, 7821 (1997). ( , B. Roux. http://dx.doi.org/10.1021/jp971083h)
- 7. A. Chem. Phys. Lett. 290, 237 (1998). ( , F. Hirata. http://dx.doi.org/10.1016/S0009-2614(98)00471-0)
- 8. A. J. Chem. Phys. 110, 10095 (1999). ( , F. Hirata. http://dx.doi.org/10.1063/1.478883)
- 9. A. J. Chem. Phys. 112, 10391 (2000). ( , F. Hirata. http://dx.doi.org/10.1063/1.481676)
- 10. A. J. Chem. Phys. 112, 10403 (2000). ( , F. Hirata. http://dx.doi.org/10.1063/1.481677)
- 11. A. Kovalenko. “Three-dimensional RISM theory for molecular liquids and solid-liquid inter-faces”, in Molecular Theory of Solvation, F. Hirata (Ed.), Series: Understanding Chemical Reactivity, Vol. 24, pp. 169–275, Kluwer, Dordrecht (2003).
- 12. H. J. Chem. Phys. 112, 9463 (2000). ( , A. Kovalenko, F. Hirata. http://dx.doi.org/10.1063/1.481564)
- 13. S. J. Phys. Chem. A 110, 6083 (2006). ( , T. Ziegler, A. Kovalenko. http://dx.doi.org/10.1021/jp054344t)
- 14. D. J. Chem. Theory Comput. 3, 458 (2007). ( , S. Gusarov, A. Kovalenko, T. Ziegler. http://dx.doi.org/10.1021/ct6001785)
- 15. J. W. J. Phys. Chem. A 114, 6082 (2010). ( , S. Gusarov, T. A. Wesolowski, A. Kovalenko. http://dx.doi.org/10.1021/jp100158h)
- 16. M. J. Phys. Chem. B 113, 3536 (2009). ( , S. Bruzzone, C. Chiappe, S. Gusarov, A. Kovalenko. http://dx.doi.org/10.1021/jp810887z)
- 17. A. Chem. Phys. Lett. 349, 496 (2001). ( , F. Hirata. http://dx.doi.org/10.1016/S0009-2614(01)01241-6)
- 18. A. J. Theor. Comput. Chem. 1, 381 (2002). ( , F. Hirata. http://dx.doi.org/10.1142/S0219633602000282)
- 19. J. G. J. Am. Chem. Soc. 127, 8307 (2005). ( , J. Raez, T. Yamazaki, R. K. Motkuri, A. Kovalenko, H. Fenniri. http://dx.doi.org/10.1021/ja051496t)
- 20. R. S. J. Am. Chem. Soc. 129, 5735 (2007). ( , T. Yamazaki, A. Kovalenko, H. Fenniri. http://dx.doi.org/10.1021/ja0706192)
- 21. G. Langmuir 24, 4447 (2007). ( , T. Yamazaki, A. Kovalenko, H. Fenniri. http://dx.doi.org/10.1021/la8001114)
- 22. T. ChemPhysChem 11, 361 (2010). ( , H. Fenniri, A. Kovalenko. http://dx.doi.org/10.1002/cphc.200900324)
- 23. R. J. Am. Chem. Soc. Commun. 132, 32 (2010). ( , J. Moralez, J. Raez, T. Yamazaki, J.-Y. Cho, A. Myles, A. Kovalenko, H. Fenniri. http://dx.doi.org/10.1021/ja908775g)
- 24. T. J. Am. Chem. Soc. Commun. 127, 15334 (2005). ( , R. Hiraoka, A. Kovalenko, F. Hirata. http://dx.doi.org/10.1021/ja054434b)
- 25. N. J. Phys. Chem. B (Feature Article) 113, 873 (2009). ( , T. Imai, S. Phongphanphanee, A. Kovalenko, F. Hirata. http://dx.doi.org/10.1021/jp807068k)
- 26. T. J. Phys. Chem. B 115, 8288 (2011). ( , N. Miyashita, Y. Sugita, A. Kovalenko, F. Hirata, A. Kidera. http://dx.doi.org/10.1021/jp2015758)
- 27. T. Biophys. J. 95, 4540 (2008). ( , N. Blinov, D. Wishart, A. Kovalenko. http://dx.doi.org/10.1529/biophysj.107.123000)
- 28. N. Biophys. J. 98, 282 (2010). ( , L. Dorosh, D. Wishart, A. Kovalenko. http://dx.doi.org/10.1016/j.bpj.2009.09.062)
- 29. N. Mol. Simul. 37, 718 (2011). ( , L. Dorosh, D. Wishart, A. Kovalenko. http://dx.doi.org/10.1080/08927022.2010.544306)
- 30. A. J. Mol. Liq. 164, 101 (2011). ( , N. Blinov. http://dx.doi.org/10.1016/j.molliq.2011.09.011)
- 31. D. J. Chem. Theory Comput. 8, 3356 (2012). ( , N. Blinov, D. Wishart, A. Kovalenko. http://dx.doi.org/10.1021/ct300257v)
- 32. M. C. J. Phys. Chem. B 115, 205 (2011). ( , N. Blinov, D. Wishart, A. Kovalenko, V. S. Pande. http://dx.doi.org/10.1021/jp102587q)
- 33. A. Soft Matter 8, 1508 (2012). ( , A. E. Kobryn, S. Gusarov, O. Lyubimova, X. Liu, N. Blinov, M. Yoshida. http://dx.doi.org/10.1039/c1sm06542d)
- 34. K. J. Phys. Chem. B 106, 5042 (2002). ( , T. Yamaguchi, A. Kovalenko, F. Hirata. http://dx.doi.org/10.1021/jp013400x)
- 35. I. J. Theor. Comput. Chem. 2, 193 (2003). ( , A. Kovalenko, F. Hirata. http://dx.doi.org/10.1142/S0219633603000501)
- 36. A. Phys. Chem. Chem. Phys. 7, 1785 (2005). ( , F. Hirata. http://dx.doi.org/10.1039/b416615a)
- 37. A. Kovalenko, F. Hirata. “A molecular theory of solutions at liquid interfaces”, in Interfacial Nanochemistry: Molecular Science and Engineering at Liquid-Liquid Interfaces, H. Watarai (Ed.), Series: Nanostructure Science and Technology, D. J. Lockwood (Ed.), pp. 97–125, Springer (2005).
- 38. J. S. J. Chem. Phys. 97, 7656 (1992). ( , B. M. Pettitt. http://dx.doi.org/10.1063/1.463485)
- 39. B. Int. J. Thermophys. 16, 743 (1995). ( . http://dx.doi.org/10.1007/BF01438859)
- 40. J. G. J. Chem. Phys. 19, 774 (1951). ( , F. P. Buff. http://dx.doi.org/10.1063/1.1748352)
- 41. Y. J. Chem. Phys. 114, 9506 (2001). ( , T. Imai, A. Kovalenko, M. Kinoshita, F. Hirata. http://dx.doi.org/10.1063/1.1369138)
- 42. T. Biopolymers 59, 512 (2001). ( , Y. Harano, A. Kovalenko, F. Hirata. http://dx.doi.org/10.1002/1097-0282(200112)59:7<512::AID-BIP1056>3.0.CO;2-C)
- 43. T. J. Chem. Theory Comput. 5, 1723 (2009). ( , A. Kovalenko. http://dx.doi.org/10.1021/ct9000729)
- 44. T. J. Phys. Chem. B 115, 310 (2011). ( , A. Kovalenko. http://dx.doi.org/10.1021/jp1082938)
- 45. T. J. Am. Chem. Soc. 131, 12430 (2009). ( , K. Oda, A. Kovalenko, F. Hirata, A. Kidera. http://dx.doi.org/10.1021/ja905029t)
- 46. S. J. Comput. Chem. 33, 1478 (2012). ( , B. S. Pujari, A. Kovalenko. http://dx.doi.org/10.1002/jcc.22974)
- 47. A. J. Comput. Chem. 20, 928 (1999). ( , S. Ten-no, F. Hirata. http://dx.doi.org/10.1002/(SICI)1096-987X(19990715)20:9<928::AID-JCC4>3.0.CO;2-X)
- 48. P. Chem. Phys. Lett. 73, 393 (1980). ( . http://dx.doi.org/10.1016/0009-2614(80)80396-4)
- 49. Y. J. Sci. Stat. Comput. 7, 856 (1986). ( , M. H. Schultz. http://dx.doi.org/10.1137/0907058)
- 50. J. J. J. Chem. Theory Comput. 4, 1928 (2008). ( , J. S. Perkyns, N. Choudhury, B. M. Pettitt. http://dx.doi.org/10.1021/ct8002817)
- 51. N. J. Chem. Phys. 126, 054511 (2007). ( , S. Kato. http://dx.doi.org/10.1063/1.2431809)
- 52. J. A. Proc. Natl. Acad. Sci. USA 103, 8331 (2006). ( , N. A. Baker. http://dx.doi.org/10.1073/pnas.0600118103)
- 53. R. M. J. Am. Chem. Soc. 125, 9523 (2003). ( , L. Y. Zhang, A. K. Felts. http://dx.doi.org/10.1021/ja029833a)
- 54. H. J. Comput. Chem. 25, 238 (2004). ( , D. A. Case. http://dx.doi.org/10.1002/jcc.10379)
- 55. K. J. Phys. Chem. B 103, 4570 (1999). ( , D. Chandler, J. Weeks. http://dx.doi.org/10.1021/jp984327m)
- 56. E. J. Chem. Phys. 2, 41 (1973). ( , P. Ros, D. E. Ellis. http://dx.doi.org/10.1016/0301-0104(73)80059-X)
- 57. G. J. Comput. Chem. 22, 931 (2001). ( , F. Bickelhaupt, S. van Gisbergen, C. Guerra, E. Baerends, J. Snijders, T. Ziegler. http://dx.doi.org/10.1002/jcc.1056)
- 58. C. F. Theor. Chem. Acc. 99, 391 (1998). , J. Snijders, G. te Velde, E. Baerends.
- 59. T. A. J. Phys. Chem. 97, 8050 (1993). ( , A. Warshel. http://dx.doi.org/10.1021/j100132a040)
- 60. L. J. Chem. Phys. 88, 322 (1988). ( , T. Ziegler. http://dx.doi.org/10.1063/1.454603)
- 61. T. J. Comput. Chem. 29, 871 (2008). ( , F. Hirata. http://dx.doi.org/10.1002/jcc.20844)
- 62. I. P. J. Chem. Phys. 135, 114110 (2011). ( , A. Kovalenko. http://dx.doi.org/10.1063/1.3637035)
- 63. E. J. Chem. Phys. 109, 1617 (1998). ( , T. Schlick. http://dx.doi.org/10.1063/1.476736)
- 64. J. A. J. Chem. Phys. 114, 2090 (2001). ( , D. P. Catarello, J. M. Wozniak, R. D. Skeel. http://dx.doi.org/10.1063/1.1332996)
- 65. R. D. Mol. Phys. 100, 3885 (2002). ( , J. A. Izaguirre. http://dx.doi.org/10.1080/0026897021000018321)
- 66. Q. Multiscale Model. Simul. 2, 1 (2003). ( , J. A. Izaguirre. http://dx.doi.org/10.1137/S1540345903423567)
- 67. S. J. Chem. Phys. 127, 044108 (2007). ( . http://dx.doi.org/10.1063/1.2753496)
- 68. G. J. Mol. Phys. 87, 1117 (1996). ( , M. E. Tuckerman, D. J. Tobias, M. L. Klein. http://dx.doi.org/10.1080/00268979600100761)
- 69. A. J. Phys. Chem. B 103, 5396 (1999). ( , K. M. Merz Jr. http://dx.doi.org/10.1021/jp990231w)
- 70. J. Mol. Struct.: THEOCHEM 530, 237 (2000). ( . http://dx.doi.org/10.1016/S0166-1280(99)00314-0)
- 71. W. J. Comput. Chem. 24, 920 (2003). ( , M. Mikami. http://dx.doi.org/10.1002/jcc.10249)
- 72. I. P. J. Chem. Phys. 135, 234107 (2011). ( , A. Kovalenko. http://dx.doi.org/10.1063/1.3669385)
- 73. P. J. Chem. Phys. 118, 2510 (2003). ( , G. J. Martyna, M. E. Tuckerman. http://dx.doi.org/10.1063/1.1534582)
- 74. P. Phys. Rev. Lett. 93, 150201 (2004). ( , M. E. Tuckerman, G. J. Martyna. http://dx.doi.org/10.1103/PhysRevLett.93.150201)
- 75. J. B. Abrams, M. E. Tuckerman, G. J. Martyna. Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology, Vol. 1, Springer, Berlin (2006) [Lecture Notes in Physics 703, 139 (2006)].
- 76. T. J. Chem. Theory Comput. 6, 607 (2010). ( , S. Gusarov, D. R. Roe, C. Simmerling, D. A. Case, J. Tuszynski, A. Kovalenko. http://dx.doi.org/10.1021/ct900460m)
- 77. I. P. Omelyan, A. Kovalenko. Mol. Simul. (2012). (http://dx.doi.org/10.1080/08927022.2012.700486)
- 78. N. Nature 457, 111 (2009). ( , H. Nury, M. Baaden, C. Le Poupon, J.-P. Changeux, M. Delarue, P.-J. Corringer. http://dx.doi.org/10.1038/nature07462)
- 79. Y. Anesthesia Analgesia 110, 59 (2010). ( , L. Yang, P.-J. Corringer, J. M. Sonner. http://dx.doi.org/10.1213/ANE.0b013e3181c4bc69)
- 80. D. Biophys. J. 93, 1960 (2007). ( , W. Nonner, M. Valiskó, D. Henderson, B. Eisenberg, D. Gillespie. http://dx.doi.org/10.1529/biophysj.107.105478)
- 81. D. J. Chem. Phys. 125, 034901 (2006). ( , M. Valiskó, B. Eisenberg,W. Nonner, D. Henderson, D. Gillespie. http://dx.doi.org/10.1063/1.2212423)
- 82. D. Phys. Rev. Lett. 98, 168102 (2007). ( , M. Valiskó, B. Eisenberg, W. Nonner, D. Henderson, D. Gillespie. http://dx.doi.org/10.1103/PhysRevLett.98.168102)
- 83. D. J. J. Phys. Chem. 96, 3864 (1992). ( , C. L. Brooks III. http://dx.doi.org/10.1021/j100188a054)
- 84. D. S. J. Phys. Chem. B 108, 19487 (2004). ( , T. Ishida, R. M. Levy. http://dx.doi.org/10.1021/jp048540w)
- 85. A. J. Chem. Phys. 115, 8620 (2001). ( , F. Hirata. http://dx.doi.org/10.1063/1.1409954)
- 86. A. Condensed Matter Phys. 4, 643 (2001). , F. Hirata.
- 87. A. Chem. Phys. Lett. 378, 638 (2003). ( , A. Kovalenko, F. Hirata. http://dx.doi.org/10.1016/S0009-2614(03)01336-8)
- 88. A. J. Comput. Theor. Nanosci. 1, 398 (2004). ( . http://dx.doi.org/10.1166/jctn.2004.038)
- 89. A. Langmuir 23, 1507 (2007). ( , A. Kovalenko, F. Hirata. http://dx.doi.org/10.1021/la061617i)
- 90. J. Phys. Rev. A 45, 816 (1992). ( . http://dx.doi.org/10.1103/PhysRevA.45.816)
- 91. J. J. Chem. Phys. 97, 4573 (1992). ( , G. Stell. http://dx.doi.org/10.1063/1.463883)
- 92. J. Physica A 209, 495 (1994). ( , G. Stell. http://dx.doi.org/10.1016/0378-4371(94)90200-3)
- 93. J. Given, G. Stell. In Condensed Matter Theories, Vol. 8, L. Blum, F. B. Malik (Eds.), pp. 395–410, Plenum, New York (1993).
- 94. L. L. J. Chem. Phys. 97, 8606 (1992). ( . http://dx.doi.org/10.1063/1.463379)
- 95. M. Carbon Sci. 1, 117 (2001). , T. Takeda, Y. J. Kim, K. Koshiba, K. Ishii.