CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2012, Vol. 84, No. 8, pp. 1815-1835

http://dx.doi.org/10.1351/PAC-REP-10-07-07

Published online 2012-06-04

ANALYTICAL CHEMISTRY DIVISION

ORGANIC AND BIOMOLECULAR CHEMISTRY DIVISION

PHYSICAL AND BIOPHYSICAL CHEMISTRY DIVISION

Characterization of photoluminescence measuring systems (IUPAC Technical Report)

Ute Resch-Genger1* and Paul C. DeRose2

1 Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, D-12489 Berlin, Germany
2 National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899‑8312, USA

References

  • 1. J. R. Lakowicz. Principles of Fluorescence Spectroscopy, 3rd ed., Springer Science+Business, New York (2006).
  • 2. J. R. Lakowicz (Ed.). Topics in Fluorescence Spectroscopy Series, Vols. 1–8, Plenum Press, New York (1992–2004).
  • 3. O. S. Wolfbeis (Ed.). Springer Series on Fluorescence, Methods and Applications, Vols. 1–3, Springer, Berlin (2001–2004).
  • 4. S. G. Schulman (Ed.). Molecular Luminescence Spectroscopy, Parts 1–3, Wiley Interscience, New York (1985–1993).
  • 5. W. T. Mason. Fluorescent and Luminescent Probes for Biological Activity, 2nd ed., Academic Press, San Diego (1999).
  • 6. B. Valeur. Molecular Fluorescence: Principles and Application, Wiley-VCH, Weinheim (2002).
  • 7. U. Resch-Genger (Ed.). Springer Series Methods and Applications of Fluorescence, Parts I and II, Vols. 5 and 6, O. S. Wolfbeis (Series Ed.), Springer, Berlin (2008).
  • 8. K. D. Mielenz. Optical Radiation Measurements, Vol. 3, Measurement of Photoluminescence, Academic Press, New York (1982).
  • 9. C. Burgess, D. G. Jones. Spectrophotometry, Luminescence and Colour, Elsevier, Amsterdam (1995).
  • 10. U. Resch-Genger, K. Hoffmann, W. Nietfeld, A. Engel, B. Ebert, R. Macdonald, J. Neukammer, D. Pfeifer, A. Hoffmann. J. Fluoresc. 15, 337 (2005). (http://dx.doi.org/10.1007/s10895-005-2630-3)
  • 11. C. A. Parker. Photoluminescence of Solutions, Elsevier, Amsterdam (1968).
  • 12. D. M. Jameson, J. C. Croney, P. D. J. Moens. Methods Enzymol. 360, 1 (2003). (http://dx.doi.org/10.1016/S0076-6879(03)60105-9)
  • 13. G. E. Marti, R. F. Vogt, A. K. Gaigalas, C. S. Hixson, R. A. Hoffman, R. Lenkei, L. E. Magruder, N. B. Purvis, A. Schwartz, H. M. Shapiro, A. Waggoner. Fluorescence Calibration and Quantitative Measurements of Fluorescence Intensity, Approved Guideline, NCCLS, I/LA24-A, Vol. 24, No. 26 (2004).
  • 14. K. Rurack. “Fluorescence, quantum yields—Methods of determination and standards”, in Standardization and Quality Assurance in Fluorescence Measurements I: Techniques, Vol. 5, U. Resch-Genger (Ed.), O. S. Wolfbeis, (Series Ed.), Springer, Berlin (2008).
  • 15. K. Rurack, U. Resch-Genger. Determination of the photoluminescence quantum yield of dilute dye solutions Pure Appl. Chem. Submitted for publication. (IUPAC Project #2004-021-1-300).
  • 16. A. M. Brouwer. Pure Appl. Chem. 83, 2213 (2011). (http://dx.doi.org/10.1351/PAC-REP-10-09-31)
  • 17. U. Resch-Genger, D. Pfeifer, C. Monte, W. Pilz, A. Hoffmann, M. Spieles, K. Rurack, D. R. Taubert, B. Schönenberger, P. Nording. J. Fluoresc. 15, 315 (2005). (http://dx.doi.org/10.1007/s10895-005-2629-9)
  • 18. P. C. DeRose, E. A. Early, G. W. Kramer. Rev. Sci. Instrum. 78, 033107 (2007). (http://dx.doi.org/10.1063/1.2715952)
  • 19. Colorimetry. CIE-Publ. 15.2, 2nd ed. (1986).
  • 20. D. C. Rich, D. Martin. Anal. Chem. Acta 380, 263 (1999). (http://dx.doi.org/10.1016/S0003-2670(98)00549-2)
  • 21. ASTM E 388-04. “Spectral bandwidth and wavelength accuracy of fluorescence spectrometers”, in Annual Book of ASTM Standards, Vol. 03.06, ASTM International (2004, original version 1972).
  • 22. ASTM E 578-01. “Linearity of fluorescence measuring system”, in Annual Book of ASTM Standards, Vol. 03.06, ASTM International (2001, original version 1983).
  • 23. ASTM E 579-04. “Limit of detection of fluorescence of quinine sulfate”, in Annual Book of ASTM Standards, Vol. 03.06, ASTM International (2004, original version 1984).
  • 24. J. N. Miller (Ed.). Techniques in Visible and Ultraviolet Spectrometry, Vol. 2, Standards in Fluorescence Spectrometry, Chapman and Hall, New York (1981).
  • 25. D. F. Eaton. Pure Appl. Chem. 60, 1107 (1988). (http://dx.doi.org/10.1351/pac198860071107)
  • 26. D. F. Eaton. EPA Newslett. 23/24, 47 (1985).
  • 27. P. C. DeRose. Recommendations and guidelines for standardization of fluorescence spectroscopy, NISTIR 7457, National Institute of Standards and Technology, Gaithersburg, MD (2007).
  • 28. P. C. DeRose. Standard guide to fluorescence: Instrument calibration and validation, NISTIR 7458, National Institute of Standards and Technology, Gaithersburg, MD (2007).
  • 29. P. C. DeRose, U. Resch-Genger. Anal. Chem. 82, 2129 (2010). (http://dx.doi.org/10.1021/ac902507p)
  • 30. R. A. Velapoldi. “Liquid standards in fluorescence spectrometry”, in Advances in Standards and Methodology in Spectrophotometry, C. Burgess, K. D. Mielenz (Eds.), Elsevier, Amsterdam, (1987).
  • 31. R. A. Velapoldi, M. S. Epstein. “Luminescence standards for macro- and microspectro-fluorometry”, in Luminescence Applications in Biological, Chemical, Environmental and Hydrological Sciences, M. C. Goldberg (Ed.), ACS Symposium Series No. 383, pp. 97–126, American Chemical Society, Washington, DC (1989).
  • 32. J. Hollandt, D. R. Taubert, J. Seidel, U. Resch-Genger, A. Gugg-Helminger, D. Pfeifer, C. Monte. J. Fluoresc. 15, 301 (2005). (http://dx.doi.org/10.1007/s10895-005-2628-x)
  • 33. J. A. Gardecki, M. Maroncelli. Appl. Spectrosc. 52, 1179 (1998). (http://dx.doi.org/10.1366/0003702981945192)
  • 34. U. Resch-Genger, P. DeRose. Pure Appl. Chem. 82, 2315 (2010). (http://dx.doi.org/10.1351/PAC-REP-09-09-02)
  • 35. S. E. Braslavsky. Pure Appl. Chem. 79, 293 (2007). (http://dx.doi.org/10.1351/pac200779030293)
  • 36. W. L. Budde. Optical Radiation Measurements: Physical Detectors, Optical Radiation Measurements, Vol. 4, Academic Press, New York (1983).
  • 37. U. Resch-Genger, D. Pfeifer, K. Hoffmann, G. Flachenecker, A. Hoffmann, C. Monte. “Linking fluorometry to radiometry with physical and chemical transfer standards: Instrument characterization and traceable fluorescence measurements”, in Standardization and Quality Assurance in Fluorescence Measurements I: Techniques, Vol. 5, U. Resch-Genger (Ed.), O. S. Wolfbeis (Series Ed.), Springer, Berlin (2008).
  • 38. Owing to radiometric conventions, s implies sλ. The subscript λ denotes per nanometer or spectral.
  • 39. M. Ameloot, M. vandeVen, A. U. Acuña, B. Valeur. Fluorescence anisotropy measurements in solution: Methods and reference materials (IUPAC Project #2004-021-1-300, <http://www.iupac.org/web/ins/2004-021-1-300>).
  • 40. C. Monte, U. Resch-Genger, D. Pfeifer, R. D. Taubert, J. Hollandt. Metrologia 43, S89 (2006). (http://dx.doi.org/10.1088/0026-1394/43/2/S18)
  • 41. K. D. Mielenz, K. L. Eckerle. Appl. Opt. 11, 2294 (1972). (http://dx.doi.org/10.1364/AO.11.002294)
  • 42. J. C. Zwinkels, D. S. Gignac. Appl. Opt. 30, 1678 (1991). (http://dx.doi.org/10.1364/AO.30.001678)
  • 43. As follows from eqs. 2 and 3, fluorescence intensity is proportional to the absorption factor and not to absorbance and thus, concentration. For very dilute dye solutions, e.g., with absorbances ≤0.05, however, absorbance and absorption factor are almost identical; with increasing absorbance, this approximation becomes less valid.
  • 44. K. Hoffmann, C. Monte, D. Pfeifer, U. Resch-Genger. GIT Lab. J. 29 (2005).
  • 45. C. J. Sansonetti, M. L. Salit, J. Reader. Appl. Opt. 35, 74 (1996). (http://dx.doi.org/10.1364/AO.35.000074)
  • 46. J. E. Sansonetti, W. C. Martin. Handbook of Basic Atomic Spectroscopic Data, National Institute of Standards, Gaithersburg, MD <www.physics.nist.gov/PhysRefData/Handbook/index.html>.
  • 47. G. R. Harrison. MIT Wavelength Tables, Vol. 2, Wavelengths by Element, MIT Press, Cambridge, MA (1982).
  • 48. A. N. Zaidel, V. K. Prokofev, S. M. Raiskii, V. A. Slavnyi, E. Y. Shreider. Tables of Spectral Lines, Plenum Press, New York (1970).
  • 49. Calibration light source CAL-2000, MIKROPACK GmbH (<http://www.mikropack.de>) or Ocean Optics Inc. (<http://www.oceanoptics.com>).
  • 50. Certain commercial equipment, instruments, or materials are identified in this chapter to foster understanding. Such identification does not imply recommendation or endorsement by IUPAC, BAM, or NIST, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.
  • 51. J. M. Lerner, R. M. Zucker. Cytometry 62A, 8 (2004). (http://dx.doi.org/10.1002/cyto.a.20087)
  • 52. I. T. Lifshitz, M. L. Meilman. Sov. J. Opt. Technol. 55, 487 (1989).
  • 53. Photon Technology International, Inc. (DYAG) FA-2036.
  • 54. K. Hoffmann, U. Resch-Genger, R. Nitschke. GIT Imaging Microsc. 18 (2005).
  • 55. This is, e.g., offered by Varian, Inc.
  • 56. V. R. Weidner, R. Mavrodineanu, K. D. Mielenz, R. A. Velapoldi, K. L. Eckerle, B. Adams. J. Res. Natl. Bur. Stand. 90, 115 (1985).
  • 57. W. May, R. Parris, C. Beck, J. Fassett, R. Greenberg, F. Guenther, G. Kramer, S. Wise, T. Gills, J. Colbert, R. Gettings, B. MacDonald. Definitions of Terms and Modes Used at NIST for Value-assignment of Reference Materials for Chemical Measurements, NIST Special Publication 260-136, U.S. Government Printing Office, Washington, DC (2000).
  • 58. D. Pfeifer, K. Hoffmann, A. Hoffmann, C. Monte, U. Resch-Genger. J. Fluoresc. 16, 581 (2006). (http://dx.doi.org/10.1007/s10895-006-0086-8)
  • 59. P. C. DeRose, E. A. Early, G. W. Kramer. “Measuring and certifying true fluorescence spectra with a qualified fluorescence spectrometer”, in Proceedings of the 5th Oxford Conference on Spectrometry, Crown, UK (2008).
  • 60. R. A. Velapoldi, H. H. Tonnesen. J. Fluoresc. 14, 465 (2004). (http://dx.doi.org/10.1023/B:JOFL.0000031828.96368.c1)
  • 61. J. W. Hofstraat, M. J. Latuhihin. Appl. Spectrosc. 48, 436 (1994). (http://dx.doi.org/10.1366/000370294775269027)
  • 62. G. Kortüm, B. Finckh. Spectrochim. Acta 2, 137 (1941–1944).
  • 63. E. Lippert, W. Nägele, I. Seibold-Blankenstein, U. Staiger, W. Voss. Z. Anal. Chem. 170, 1 (1959). (http://dx.doi.org/10.1007/BF00448550)
  • 64. R. J. Argauer, C. E. White. Anal. Chem. 36, 368 (1964). (http://dx.doi.org/10.1021/ac60208a038)
  • 65. A. Thompson, K. L. Eckerle. Proc. SPIE-Int. Soc. Opt. Eng. 1054, 20 (1989).
  • 66. National Institute of Standards and Technology (NIST), Certificate of analysis, Standard Reference Material 1931, fluorescence emission standards for the visible region. This set of four solid spectral fluorescence standards in a cuvette format, which is no longer available, was restricted in measurement geometry and certified using polarizers (1989).
  • 67. See, for instance, Invitrogen or former Molecular Probes, Starna GmbH, Matech Precision Dynamics Coorp., Labsphere Inc., and LambdaChem GmbH.
  • 68. U. Resch-Genger, P. DeRose, W. Bremser, B. Ebert, J. Zwinkels, D. Pfeifer, J. Voigt, D. Taubert, C. Monte, R. MacDonald, J. Hollandt, F. Gauthier, M. Spieles, A. Hoffmann. Anal. Chem. 84, 3889 (2012). (http://dx.doi.org/10.1021/ac2034503)
  • 69. U. Resch-Genger, P. DeRose, W. Bremser, B. Ebert, J. Zwinkels, D. Pfeifer, J. Voigt, D. Taubert, C. Monte, R. MacDonald, J. Hollandt, F. Gauthier, M. Spieles, A. Hoffmann. Anal. Chem. 84, 3899 (2012). (http://dx.doi.org/10.1021/ac203451g)
  • 70. Federal Institute for Materials Research and Testing (BAM). Certificates of analysis, Certified Reference Materials BAM-F001, BAM-F002, BAM-F003, BAM-F004, and BAM-F001 (2006). Spectral fluorescence standard for the determination of the relative spectral responsivity of fluorescence instruments within its emission range. Certification of emission spectra in 1-nm intervals. The corresponding product numbers from Sigma-Aldrich for the ready-made standards are 97003-1KT-F for the Calibration Kit and 72594, 23923, 96158, 74245, and 94053 for BAM-F001, BAM-F002, BAM-F003, BAM-F004, and BAM-F005, respectively.
  • 71. U. Resch-Genger, D. Pfeifer. Certification report, Calibration Kit Spectral Fluorescence Standards BAM-F001 – BAM-F005, BAM (2006).
  • 72. Federal Institute for Materials Research and Testing (BAM). Certificates of analysis, Certified Reference Materials BAM-F001, BAM-F002a, BAM-F003, BAM-F004, and BAM-F001 (2009). Spectral fluorescence standard for the determination of the relative spectral responsivity of fluorescence instruments within its emission range. Certification of emission spectra in 1-nm intervals. The corresponding product numbers from Sigma-Aldrich for the ready-made standards are 69336-1KT-F for the Calibration Kit and 72594, 07021, 96158, 74245, and 94053 for BAM-F001, BAM-F002a, BAM-F003, BAM-F004, and BAM-F005, respectively.
  • 73. National Institute of Standards and Technology (NIST). Certificate of analysis, Standard Reference Materials 2940 and 2941, Relative intensity correction standard for fluorescence spectroscopy: Orange (SRM 2940) and green emission (SRM 2941). Certification of emission spectra in 1-nm intervals (2007). (<http://ts.nist.gov/ts/htdocs/ 230/232/232.htm>).
  • 74. National Institute of Standards and Technology (NIST). Certificate of analysis, Standard Reference Material 936a, quinine sulfate dihydrate (1994). (<http://ts.nist.gov/ts/htdocs/ 230/232/232.htm>).
  • 75. R. A. Velapoldi, K. D. Mielenz. A Fluorescence Standard Reference Material: Quinine Sulfate Dihydrate, NBS Special Publication 260-64, PB 80132046, Springfield, VA (1980).
  • 76. C. Würth, M. Grabolle, J. Paui, M. Spieles, U. Resch-Genger. Anal. Chem. 83, 3431 (2011).
  • 77. C. Würth, J. Paui, M. Spieles, U. Resch-Genger. Anal. Chem. 84, 1345 (2012). (http://dx.doi.org/10.1021/ac2021954)
  • 78. C. Würth, C. Lochmann, M. Spieles, J. Paui, K. Hoffmann, T. Schüttrigkeit, T. Franzl, U. Resch-Genger. Appl. Spectrosc. 64, 733 (2010). (http://dx.doi.org/10.1366/000370210791666390)
  • 79. N. P. Fox. Metrologia 28, 197 (1991). (http://dx.doi.org/10.1088/0026-1394/28/3/018)
  • 80. L. Werner, J. Fischer, U. Johannsen, J. Hartmann. Metrologia 37, 279 (2000). (http://dx.doi.org/10.1088/0026-1394/37/4/3)
  • 81. A pyroelectric detector measures the energy of absorbed photon with a wavelength independent responsivity (gray detector).
  • 82. Typically, quantum counters are highly concentrated dye solutions that transform absorbed photons with an excitation wavelength-independent constant quantum yield into emitted photons. Such materials are prone to concentration, polarization, and geometry effects resulting in enhanced calibration uncertainties. However, quantum counters can be also physical devices, see, e.g., ref. [35].
  • 83. W. H. Melhuish. Appl. Opt. 14, 26 (1975).
  • 84. S. J. Hart, P. J. Jones. Appl. Spectrosc. 55, 1717 (2001). (http://dx.doi.org/10.1366/0003702011954071)
  • 85. H. J. Kuhn, S. E. Braslavsky, R. Schmidt. Pure Appl. Chem. 76, 2105 (2004). (http://dx.doi.org/10.1351/pac200476122105)
  • 86. An actinometer exploits the wavelength-independent quantum yield of a photochemical reaction, yielding a measurable and well-characterized product.
  • 87. K. D. Mielenz, R. A. Velapoldi, R. Mavrodineanu. Standardization in Spectrophometry and Luminescence Measurements, NBS Special Publication 466, Gaithersfield, MD (1977).
  • 88. Depending on the photoluminescence measuring instrument used, either two signals (spectro-fluorometer reading out the emission and the reference channel separately) or the quotient of two signals (spectrofluorometer recording the quotient of the signal from the emission detector and the reference detector) are recorded during the measurement of fluorescence emission and fluorescence excitation spectra.
  • 89. Note that for this type of measurement and instrument characterization, only the relative spectral shape is relevant, not the absolute intensity. For the measurement of fluorescence quantum yields using two different excitation wavelengths, similarly only the relative changes in spectral irradiance at sample position are relevant, not the absolute numbers of photons reaching the sample. This procedure relies on the assumption that the spectral characteristics of the reference channel remain constant between calibration and measurement. This is reasonable as long as the time intervals between instrument characterization and measurements are not too long and if no optical or opto-electronical components in the excitation and reference channel are exchanged or readjusted. For this method, calibration intervals of 6 months are recommended.
  • 90. J. H. Chapman, Th. Förster, G. Kortüm, C. A. Parker, E. Lippert, W. H. Melhuish, G. Nebbia. Appl. Spectrosc. 17, 171 (1963).
  • 91. E. Ejder. J. Opt. Soc. A 59, 223 (1969).
  • 92. C. A. Parker, W. T. Rees. Analyst 85, 587 (1960). (http://dx.doi.org/10.1039/an9608500587)
  • 93. P. Froehlich. Int. Lab. 42 (1989).
  • 94. R. J. Kovach, W. M. Peterson. Am. Lab. 32G (1994).
  • 95. U. Resch-Genger, K. Hoffmann, D. Pfeifer. “Simple instrument calibration and validation standards for fluorescence techniques”, Ann. Rev. Fluoresc., Vol. 4, pp. 1–31, C. D. Geddes (Series Ed.), Springer Science Businesss Media, New York (2010).
  • 96. P. C. DeRose, L. Wang, A. K. Gaigalas, G. W. Kramer, U. Resch-Genger, U. Panne. “Need for and metrological approaches towards standardization of fluorescence measurements from the view of national metrology institutes”, in Standardization and Quality Assurance in Fluorescence Measurements I: Techniques, Techniques, Vol. 5, U. Resch-Genger (Ed.), O. S. Wolfbeis (Series Ed.), Springer, Berlin (2008).