Pure Appl. Chem., 2012, Vol. 84, No. 8, pp. 1729-1739
http://dx.doi.org/10.1351/PAC-CON-11-10-18
Published online 2012-03-13
Formation of C–C bonds via ruthenium-catalyzed transfer hydrogenation
References
- 1a. C. D. Frohning, C. W. Kohlpaintner. In Applied Homogeneous Catalysis with Organometallic Compounds, Vol. 1, B. Cornils, W. A. Herrmann (Eds.), pp. 29–104, Wiley-VCH, Weinheim (1996).
- 1b. P. W. N. M. van Leeuwen. Homogeneous Catalysis: Understanding the Art, Kluwer, Dordrecht (2004).
- 2. For a review of ruthenium-catalyzed alkene hydroformylation, see: P. Adv. Organomet. Chem. 32, 121 (1991). , Y. Peres, J. Jenck.
- 3. For recent reviews on C–C bond-forming hydrogenation and transfer hydrogenation, see.
- 3a. R. L. Aldrichim. Acta 41, 95 (2008). , J. F. Bower, I. S. Kim, M. J. Krische.
- 3b. J. F. Angew. Chem., Int. Ed. 48, 34 (2009). ( , I. S. Kim, R. L. Patman, M. J. Krische. http://dx.doi.org/10.1002/anie.200802938)
- 3c. S. B. Chem. Commun. 7278 (2009). ( , I. S. Kim, M. J. Krische. http://dx.doi.org/10.1039/b917243m)
- 3d. J. F. Top. Organomet. Chem. 34, 107 (2011). ( , M. J. Krische. http://dx.doi.org/10.1007/978-3-642-15334-1_5)
- 4. In related “hydrogen auto-transfer” reactions, alcohol dehydrogenation and nucleophile generation occur independently. Hence, pre-activated nucleophiles are required. Such processes promote formal alcohol substitution rather than carbonyl addition. For selected reviews, see.
- 4a. T. D. Dalton Trans. 753 (2009). ( , M. K. Whittlesey, J. M. J. Williams. http://dx.doi.org/10.1039/b813383b)
- 4b. G. E. Chem. Rev. 110, 681 (2010). ( , R. H. Crabtree. http://dx.doi.org/10.1021/cr900202j)
- 4c. G. Chem. Rev. 110, 1611 (2010). ( , D. J. Ramón, M. Yus. http://dx.doi.org/10.1021/cr9002159)
- 5. For a previous review on ruthenium-catalyzed transfer hydrogenative C–C bond formation, see: F. Chem. Lett. 37, 1102 (2008). ( , M. J. Krische. http://dx.doi.org/10.1246/cl.2008.1102)
- 6. For selected reviews of ruthenium-catalyzed C–C coupling, see.
- 6a. B. M. Chem. Rev. 101, 2067 (2001). ( , F. D. Toste, A. B. Pinkerton. http://dx.doi.org/10.1021/cr000666b)
- 6b. T. Curr. Org. Chem. 6, 1163 (2002). ( , T.-a. Mitsudo. http://dx.doi.org/10.2174/1385272023373545)
- 6c. S. Top. Organomet. Chem. 11, 1 (2004). ( , F. Monnier, P. H. Dixneuf. http://dx.doi.org/10.1007/b94642)
- 7. For related C–C couplings that occur by way of nucleophilic ruthenium π-allyls, see.
- 7a. Y. J. Organomet. Chem. 369, C51 (1989). ( , T. Mukai, T. Kondo, Y. Watanabe. http://dx.doi.org/10.1016/0022-328X(89)85196-4)
- 7b. T. Organometallics 14, 1945 (1995). ( , H. Ono, N. Satake, T.-a. Mitsudo, Y. Watanabe. http://dx.doi.org/10.1021/om00004a055)
- 7c. C.-M. Tetrahedron Lett. 45, 6557 (2004). ( , S. Lee, Y.-T. Hong, S.-K. Yoon. http://dx.doi.org/10.1016/j.tetlet.2004.07.032)
- 7d. S. J. Am. Chem. Soc. 130, 14094 (2008). ( , T. Fukuyama, J. Horiguchi, Y. Murakami, I. Ryu. http://dx.doi.org/10.1021/ja806929y)
- 7e. S. E. Org. Lett. 11, 781 (2009). ( , S. T. Nguyen. http://dx.doi.org/10.1021/ol8028725)
- 8. For reviews on enantioselective carbonyl allylation, see.
- 8a. P. V. Aldrichim. Acta 35, 23 (2002). .
- 8b. S. E. Chem. Rev. 103, 2763 (2003). ( , J. Fu. http://dx.doi.org/10.1021/cr020050h)
- 8c. C.-M. Bull. Kor. Chem. Soc. 27, 463 (2006). , J. Youn, H.‑K. Jung.
- 8d. I. Chem. Commun. 1683 (2007). ( , G. Sklute. http://dx.doi.org/10.1039/b615042j)
- 8e. D. G. Synlett 1644 (2007). ( . http://dx.doi.org/10.1055/s-2007-980384)
- 8f. H. Org. React. 73, 1 (2008). , D. G. Hall.
- 9. For selected reviews of carbonyl allylation based on the reductive coupling of metallo-π-allyls derived from allylic alcohols, ethers, or carboxylates, see.
- 9a. Y. Masuyama. “Palladium-catalyzed carbonyl allylation via π-allylpalladium complexes”, in Advances in Metal-Organic Chemistry, Vol. 3, L. S. Liebeskind (Ed.), pp. 255–303, JAI Press, Greenwich (1994).
- 9b. Y. Tamaru. “Palladium-catalyzed reactions of allyl and related derivatives with organo-electrophiles”, in Handbook of Organopalladium Chemistry for Organic Synthesis, Vol. 2, E.-i. Negishi, A. de Meijere (Eds.), pp. 1917–1943, John Wiley, New York (2002).
- 9c. Y. J. Organomet. Chem. 576, 215 (1999). ( . http://dx.doi.org/10.1016/S0022-328X(98)01060-2)
- 9d. T. Curr. Org. Chem. 6, 1163 (2002). ( , T.-a. Mitsudo. http://dx.doi.org/10.2174/1385272023373545)
- 9e. Y. Eur. J. Org. Chem. 2647 (2005). ( . http://dx.doi.org/10.1002/ejoc.200500076)
- 9f. G. Eur. J. Org. Chem. 3599 (2007). ( , A. Pontiroli, A. Marchetti, G. Vidari. http://dx.doi.org/10.1002/ejoc.200700054)
- 10. A. J. Am. Chem. Soc. 118, 2533 (1996). ( , N. Shi. http://dx.doi.org/10.1021/ja9537538)
- 11. For selected reviews on catalytic Nozaki–Hiyama coupling, see.
- 11a. M. Chem. Soc. Rev. 28, 169 (1999). ( , R. Babiano, P. Cintas, J. L. Jiménez, J. C. Palacios. http://dx.doi.org/10.1039/a806117c)
- 11b. M. Chem. Commun. 919 (2002). ( , P. G. Cozzi, A. Umani-Ronchi. http://dx.doi.org/10.1039/b109945k)
- 11c. G. C. Adv. Syn. Catal. 349, 2407 (2007). ( , P. J. Guiry. http://dx.doi.org/10.1002/adsc.200700324)
- 11d. M. Chem. Rec. 8, 169 (2008). ( , T. Suzuki, A. Kinoshita, M. Nakada. http://dx.doi.org/10.1002/tcr.20148)
- 12a. E. J. Am. Chem. Soc. 129, 12678 (2007). ( , J. F. Bower, M. J. Krische. http://dx.doi.org/10.1021/ja075971u)
- 12b. J. F. J. Am. Chem. Soc. 129, 15134 (2007). ( , E. Skucas, R. L. Patman, M. J. Krische. http://dx.doi.org/10.1021/ja077389b)
- 13a. J. F. Org. Lett. 10, 1033 (2008). ( , R. L. Patman, M. J. Krische. http://dx.doi.org/10.1021/ol800159w)
- 13b. S. B. J. Am. Chem. Soc. 131, 6916 (2009). ( , I. S. Kim, H. Han, M. J. Krische. http://dx.doi.org/10.1021/ja902437k)
- 13c. J. R. Adv. Synth. Catal. 352, 2416 (2010). ( , T. Fukuzumi, M. J. Krische. http://dx.doi.org/10.1002/adsc.201000599)
- 14a. M.-Y. Org. Lett. 10, 2705 (2008). ( , E. Skucas, M. J. Krische. http://dx.doi.org/10.1021/ol800836v)
- 14b. J. R. J. Am. Chem. Soc. 133, 1141 (2011). ( , E. L. McInturff, J. C. Leung, M. J. Krische. http://dx.doi.org/10.1021/ja1104156)
- 15a. E. J. Am. Chem. Soc. 131, 5054 (2009). ( , J. R. Zbieg, M. J. Krische. http://dx.doi.org/10.1021/ja900827p)
- 15b. J. R. Org. Lett. 12, 2514 (2010). ( , E. L. McInturff, M. J. Krische. http://dx.doi.org/10.1021/ol1007235)
- 16a. F. J. Am. Chem. Soc. 130, 6338 (2008). ( , J. F. Bower, M. J. Krische. http://dx.doi.org/10.1021/ja801213x)
- 16b. F. J. Am. Chem. Soc. 130, 14120 (2008). ( , J. F. Bower, M. J. Krische. http://dx.doi.org/10.1021/ja805356j)
- 16c. S. J. Am. Chem. Soc. 130, 14094 (2008). ( , T. Fukuyama, J. Horiguchi, Y. Murakami, I. Ryu. http://dx.doi.org/10.1021/ja806929y)
- 16d. J. R. J. Am. Chem. Soc. 133, 10582 (2011). ( , J. Moran, M. J. Krische. http://dx.doi.org/10.1021/ja2046028)
- 17. For intermolecular ruthenium-catalyzed hydroacylation, see.
- 17a. P. J. Organomet. Chem. 240, 285 (1982). ( , B. Denise, R. P. A. Sneeden, J. M. Cognion, P. Durual. http://dx.doi.org/10.1016/S0022-328X(00)86794-7)
- 17b. P. J. Organomet. Chem. 256, 135 (1983). ( , B. Denise, R. P. A. Sneeden, J. M. Cognion, P. Durual. http://dx.doi.org/10.1016/S0022-328X(00)99305-7)
- 17c. T. Tetrahedron Lett. 28, 6229 (1987). ( , Y. Tsuji, Y. Watanabe. http://dx.doi.org/10.1016/S0040-4039(00)61854-3)
- 17d. T. J. Org. Chem. 55, 1286 (1990). ( , M. Akazome, Y. Tsuji, Y. Watanabe. http://dx.doi.org/10.1021/jo00291a035)
- 17e. T. Organometallics 17, 2131 (1998). ( , N. Hiraishi, Y. Morisaki, K. Wada, Y. Watanabe, T.-A Mitsudo. http://dx.doi.org/10.1021/om971084w)
- 18a. T. J. Am. Chem. Soc. 131, 10366 (2009). ( , H. Han, B. Breit, M. J. Krische. http://dx.doi.org/10.1021/ja904124b)
- 18b. H. Org. Lett. 12, 2844 (2009). ( , M. J. Krische. http://dx.doi.org/10.1021/ol101077v)
- 19. Crotylmagnesium and crotylzinc reagents with Me3Si-substituents at the 2-position react with aldehydes to give racemic syn-adducts.
- 19a. F. J. Chem. Soc., Chem. Commun. 1131 (1984). , M. Kusakabe, Y. Kobayashi.
- 19b. M. D. Chem. Commun. 1916 (2008). ( , P. Mayer, P. Knochel. http://dx.doi.org/10.1039/b802157k)
- 20. For a recent review of carbonyl vinylation, see: M. C. Kauffman, P. J. Walsh. In Science of Synthesis, Stereoselective Synthesis, Vol. 2, G. A. Molander (Ed.), pp. 449–495, Thieme, Stuttgart (2011).
- 21. I. J. Am. Chem. Soc. 116, 3643 (1994). ( , M. Tzamarioudaki, C.-Y. Tsai. http://dx.doi.org/10.1021/ja00087a078)
- 22a. W. E. J. Am. Chem. Soc. 117, 6787 (1995); for an aligned study, see. ( , M. J. Rachita. http://dx.doi.org/10.1021/ja00130a022)
- 22b. N. M. J. Am. Chem. Soc. 117, 6785 (1995). ( , S. L. Buchwald. http://dx.doi.org/10.1021/ja00130a021)
- 23a. E. J. Am. Chem. Soc. 119, 9065 (1997). ( , J. Montgomery. http://dx.doi.org/10.1021/ja9719182)
- 23b. X.-Q. J. Am. Chem. Soc. 121, 6098 (1999). ( , J. Montgomery. http://dx.doi.org/10.1021/ja990997+)
- 23c. X.-Q. J. Am. Chem. Soc. 122, 6950 (2000). ( , J. Montgomery. http://dx.doi.org/10.1021/ja001440t)
- 23d. G. M. J. Am. Chem. Soc. 126, 3698 (2004). ( , G. Liu, J. Montgomery. http://dx.doi.org/10.1021/ja049644n)
- 23e. B. J. Am. Chem. Soc. 127, 13156 (2005). ( , G. M. Mahandru, J. Montgomery. http://dx.doi.org/10.1021/ja054590i)
- 23f. M. R. J. Am. Chem. Soc. 129, 9568 (2007). ( , G. J. Sormunen, J. Montgomery. http://dx.doi.org/10.1021/ja072992f)
- 23g. H. A. J. Am. Chem. Soc. 132, 6304 (2010). ( , G. J. Sormunen, J. Montgomery. http://dx.doi.org/10.1021/ja102262v)
- 24a. W.-S. Org. Lett. 2, 4221 (2000). ( , J. Chan, T. F. Jamison. http://dx.doi.org/10.1021/ol006781q)
- 24b. K. M. J. Am. Chem. Soc. 125, 3442 (2003). ( , W.-S. Huang, T. F. Jamison. http://dx.doi.org/10.1021/ja034366y)
- 24c. K. M. Org. Lett. 7, 3077 (2005). ( , T. F. Jamison. http://dx.doi.org/10.1021/ol051075g)
- 25. K. Org. Lett. 5, 653 (2003). ( , S. Sakamoto, T. Isshiki. http://dx.doi.org/10.1021/ol0272996)
- 26a. J.-R. J. Am. Chem. Soc. 128, 718 (2006). ( , M.-Y. Ngai, M. J. Krische. http://dx.doi.org/10.1021/ja056474l)
- 26b. C.-W. Org. Lett. 8, 3873 (2006). ( , M. J. Krische. http://dx.doi.org/10.1021/ol061485k)
- 26c. Y.-T. Org. Lett. 9, 3745 (2007). ( , C.-W. Cho, E. Skucas, M. J. Krische. http://dx.doi.org/10.1021/ol7015548)
- 26d. V. J. Am. Chem. Soc. 128, 16448 (2006). ( , M. J. Krische. http://dx.doi.org/10.1021/ja0673027)
- 27a. P. Chem.—Eur. J. 17, 4021 (2011). ( , M. J. Krische, K. N. Houk. http://dx.doi.org/10.1002/chem.201002741)
- 27b. Y. J. Am. Chem. Soc. 124, 7588 (2002). ( , S. Sakaki. http://dx.doi.org/10.1021/ja020063c)
- 27c. V. M. J. Am. Chem. Soc. 131, 16054 (2009). ( , J.-R. Kong, B.-J. Ko, Y. Mantri, J. S. Brodbelt, M.-H. Baik, M. J. Krische. http://dx.doi.org/10.1021/ja906225n)
- 28. J.-R. J. Am. Chem. Soc. 127, 11269 (2005). ( , C.-W. Cho, M. J. Krische. http://dx.doi.org/10.1021/ja051104i)
- 29a. R. L. J. Am. Chem. Soc. 131, 2066 (2009). ( , M. R. Chaulagain, V. M. Williams, M. J. Krische. http://dx.doi.org/10.1021/ja809456u)
- 29b. V. M. Tetrahedron 65, 5024 (2009). ( , J. C. Leung, R. L. Patman, M. J. Krische. http://dx.doi.org/10.1016/j.tet.2009.03.068)
- 29c. C. C. Angew. Chem., Int. Ed. 50, 5687 (2011). ( , R. L. Patman, B. Breit, M. J. Krische. http://dx.doi.org/10.1002/anie.201101496)
- 29d. J. C. Chem.—Eur. J. 17, 12437 (2011). ( , R. L. Patman, B. Sam, M. J. Krische. http://dx.doi.org/10.1002/chem.201101554)
- 30. For reviews encompassing carbonyl propargylation employing allenyl metal reagents, see.
- 30a. J.‑L. Moreau. The Chemistry of Ketenes, Allenes and Related Compounds, S. Patai (Ed.), pp. 363–413, John Wiley, New York (1980).
- 30b. J. A. Chem. Rev. 96, 31 (1996). ( . http://dx.doi.org/10.1021/cr950037f)
- 30c. B. W. Org. React. 64, 1 (2004). .
- 30d. J. A. Marshall, B. W. Gung, M. L. Grachan. Modern Allene Chemistry, N. Krause, A. S. K. Hashmi (Eds.), pp. 493–592, Wiley-VCH, Weinheim (2004).
- 30e. J. A. J. Org. Chem. 72, 8153 (2007). ( . http://dx.doi.org/10.1021/jo070787c)
- 31. R. L. Angew. Chem., Int. Ed. 47, 5220 (2008). ( , V. M. Williams, J. F. Bower, M. J. Krische. http://dx.doi.org/10.1002/anie.200801359)