CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2012, Vol. 84, No. 6, pp. 1317-1328

http://dx.doi.org/10.1351/PAC-CON-11-08-18

Published online 2012-04-01

Bioorganic studies on the venom from duckbill platypus

Masaki Kita

Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan

References

  • 1. M. Pucek. In Venomous Animals and their Venoms, W. Bücherl, E. A. Buckley, V. Deulofen (Eds.), Vol. 1, pp. 43–50, Academic Press, New York (1968).
  • 2. S. Churchfield. The Natural History of Shrews, Cornell University Press, Ithaca, NY (1990).
  • 3. O. P. Pearson. J. Mamm. 23, 159 (1942). (http://dx.doi.org/10.2307/1375068)
  • 4. M. J. Dufton. Pharmacol. Ther. 53, 199 (1992). (http://dx.doi.org/10.1016/0163-7258(92)90009-O)
  • 5. B. Lawrence. J. Mamm. 26, 393 (1945). (http://dx.doi.org/10.2307/1375158)
  • 6. H. L. Babcock. Science 40, 526 (1914). (http://dx.doi.org/10.1126/science.40.1032.526)
  • 7. L. L. Getz, C. M. Larson, K. A. Lindstrom. J. Mamm. 73, 591 (1992). (http://dx.doi.org/10.2307/1382030)
  • 8. M. Kita, Y. Nakamura, Y. Okumura, S. D. Ohdachi, Y. Oba, M. Yoshikuni, H. Kido, D. Uemura. Proc. Natl. Acad. Sci. USA 101, 7542 (2004). (http://dx.doi.org/10.1073/pnas.0402517101)
  • 9. M. Kita, Y. Okumura, S. D. Ohdachi, Y. Oba, M. Yoshikuni, Y. Nakamura, H. Kido, D. Uemura. Biol. Chem. 386, 177 (2005). (http://dx.doi.org/10.1515/BC.2005.022)
  • 10. M. Kita. Biophilia 5, 29 (2009). (in Japanese).
  • 11. D. Uemura, M. Kita, H. Arimoto, M. Kitamura. Pure Appl. Chem. 81, 1093 (2009). (http://dx.doi.org/10.1351/PAC-CON-08-08-12)
  • 12. D. Uemura. Proc. Jpn. Acad., Ser. B 86, 190 (2010). (http://dx.doi.org/10.2183/pjab.86.190)
  • 13. J. H. Calaby. In Venomous Animals and their Venoms, W. Bücherl, E. A. Buckley, V. Deulofen (Eds.), Vol. 1, pp. 15–29, Academic Press, New York (1968).
  • 14. E. A. Home. Philos. Trans. R. Soc. Lond. B 92, 67 (1802).
  • 15. C. J. Martin, F. Tidswell. Proc. Linn. Soc. New South Wales 9, 471 (1894).
  • 16. C. H. Kellaway, D. H. LeMesserier. J. Aust. Biol. Exp. Med. Biol. 205 (1935). (http://dx.doi.org/10.1038/icb.1935.24)
  • 17. A. M. Torres, P. W. Kuchel. Toxicon 44, 581 (2004). (http://dx.doi.org/10.1016/j.toxicon.2004.07.011)
  • 18. A. M. Torres, P. W. Kuchel. Biochemist 22, 33 (2000).
  • 19. J. M. S. Koh, P. S. Bansal, A. M. Torres, P. W. Kuchel. Aust. J. Zool. 57, 203 (2009). (http://dx.doi.org/10.1071/ZO09040)
  • 20. A. M. Torres, X. Wang, J. I. Fletcher, D. Alewood, P. F. Alewood, R. Smith, R. J. Shimpson, G. M. Nicholson, S. K. Sutherland, C. H. Gallagher, G. F. King, P. W. Kuchel. Biochem. J. 341, 785 (1999). (http://dx.doi.org/10.1042/0264-6021:3410785)
  • 21. A. M. Torres, G. de Plater, M. Doverskog, L. C. Birinyi-Strachan, G. M. Nicholson, C. H. Gallagher, P. W. Kuchel. Biochem. J. 348, 649 (2000). (http://dx.doi.org/10.1042/0264-6021:3480649)
  • 22. A. M. Torres, C. Tsampazi, D. P. Geraghty, P. S. Bansal, P. F. Alewood, P. W. Kuchel. Biochem. J. 391, 215 (2005).
  • 23. C. M. Whittington, A. T. Papenfuss, P. W. Kuchel, K. Belov. Toxicon 52, 559 (2008). (http://dx.doi.org/10.1016/j.toxicon.2008.07.002)
  • 24. G. de Plater, R. L. Martin, P. J. Milburn. Toxicon 33, 157 (1995). (http://dx.doi.org/10.1016/0041-0101(94)00150-7)
  • 25. G. de Plater, R. L. Martin, P. J. Milburn. Toxicon 36, 847 (1998). (http://dx.doi.org/10.1016/S0041-0101(97)00176-1)
  • 26. A. M. Torres, D. Alewood, P. F. Alewood, C. H. Gallagher, P. W. Kuchel. Toxicon 40, 711 (2002). (http://dx.doi.org/10.1016/S0041-0101(01)00266-5)
  • 27. A. M. Torres, M. Tsampazi, C. Tsampazi, E. C. Kennett, K. Belov, D. P. Geraghty, P. S. Bansal, P. S. Alewood, P. W. Kuchel. FEBS Lett. 580, 1587 (2006). (http://dx.doi.org/10.1016/j.febslet.2006.01.089)
  • 28. P. S. Bansal, A. M. Torres, B. Crossett, K. K. Y. Wong, J. M. S. Koh, D. P. Geraghty, J. I. Vandenberg, P. W. Kuchel. J. Biol. Chem. 283, 8969 (2008). (http://dx.doi.org/10.1074/jbc.M709762200)
  • 29. A. M. Torres, P. S. Bansal, D. Alewood, D. P. Geraghty, P. W. Kuchel. In D-Amino Acids: A New Frontier in Amino Acid and Protein Research – Practical Methods and Protocols, P. Konno, G. Fisher (Eds.), pp. 379–387, Nova Science Publishers, New York (2007).
  • 30. A. M. Torres, M. Tsampazi, E. C. Kennett, K. Belov, D. P. Geraghty, P. S. Bansal, P. F. Alewood, P. W. Kuchel. Amino Acids 32, 63 (2006). (http://dx.doi.org/10.1007/s00726-006-0346-6)
  • 31. J. M. S. Koh, S. J. P. Chow, B. Crossett, P. W. Kuchel. Chem. Biodivers. 7, 1603 (2010). (http://dx.doi.org/10.1002/cbdv.200900300)
  • 32. J. M. S. Koh, L. Haynes, K. Belov, P. W. Kuchel. Aust. J. Zool. 58, 284 (2010). (http://dx.doi.org/10.1071/ZO10045)
  • 33. C. M. Whittington, A. T. Papenfuss, P. Bansal, A. M. Torres, E. S. M. Wong, J. E. Deakin, T. Graves, A. Alsop, K. Schatzkamer, C. Kremitzki, C. P. Ponting, P. Temple–Smith, W. C. Warren, P. W. Kuchel, K. Belov. Genome Res. 18, 986 (2008). (http://dx.doi.org/10.1101/gr.7149808)
  • 34. C. M. Whittington, J. M. S. Koh, W. C. Warren, A. T. Papenfuss, A. M. Torres, P. W. Kuchel, K. Belov. J. Proteomics 72, 155 (2009) and refs. therein. (http://dx.doi.org/10.1016/j.jprot.2008.12.004)
  • 35. M. Kita, D. Uemura. Chem. Rec. 10, 48 (2010). (http://dx.doi.org/10.1002/tcr.200900030)
  • 36. M. Kita, O. Ohno, C. Han, D. Uemura. Chem. Rec. 10, 57 (2010). (http://dx.doi.org/10.1002/tcr.200900007)
  • 37. M. Kita, M. Kitamura, D. Uemura. In Comprehensive Natural Products, 2nd ed., K. Mori (Ed.), Vol. 4, Chap. 6, pp. 263–281, Elsevier, Amsterdam (2010).
  • 38. D. Uemura. Chem. Rec. 6, 235 (2006). (http://dx.doi.org/10.1002/tcr.20087)
  • 39. M. Kita, D. Uemura. Chem. Lett. 34, 454 (2005). (http://dx.doi.org/10.1246/cl.2005.454)
  • 40. M. Kita, D. StC. Black, O. Ohno, K. Yamada, H. Kigoshi, D. Uemura. J. Am. Chem. Soc. 131, 18038 (2009). (http://dx.doi.org/10.1021/ja908148z)
  • 41. When we collected platypus venom fluid from living specimens, it was immediately frozen and stored at low temperature to avoid decomposition. Despite this, the venom likely contained some fragments of OvCNPs. This suggests that OvCNP or its precursors may already be degraded (at least partially) and bioactive peptides including 1 would be formed during venom secretion. We hope to verify that the CNP fragment peptides were really produced in the venom gland and that the proteolytic activity of the venom synergistically contribute to toxicity in future studies.
  • 42. C. S. Barr, P. Rhodes, A. D. Struthers. Peptides 17, 1243 (1996). (http://dx.doi.org/10.1016/S0196-9781(96)00110-6)
  • 43. J. I. Kourie. Am. J. Physiol. C43, 277 (1999).
  • 44. G. de Plater, P. J. Milburn, R. L. Martin. J. Neurophysiol. 85, 1340 (2001).
  • 45. J. I. Kourie. J. Physiol. 518, 359 (1999). (http://dx.doi.org/10.1111/j.1469-7793.1999.0359p.x)
  • 46. In this work, peptides 1–11 were all purified from the venom fluid collected in the breeding season. Meanwhile, we found that the venom fluid collected in the non-breeding season also contained nonapeptide 4 by the MS analysis (see ref. [11]).
  • 47. R. Lura, V. Schirch. Biochemistry 27, 7671 (1988). (http://dx.doi.org/10.1021/bi00420a015)
  • 48. The concentrations of peptides 1 and 4 in the venom fluid were 230 and 46 μM, respectively, as estimated by reverse phase HPLC analyses. While the biological activities of 1 and 4 were relatively low, we concluded that they are actually one of the bioactive substances in the venom (see ref. [40]). We expect that these peptides may have abilities to specifically bind to the other target proteins or receptors that lead to neurotoxic symptoms.
  • 49. While the size of crural gland is apparently changeable with season, the largest gland in breeding season was reported to be 44 mm long and 15 mm wide (see ref. [13]). This result suggests that platypus may enable to produce and secrete considerable amounts of venom fluids much more than those of manually collected by ourselves as well as by the Australian researchers (i.e., 20–80 μL, see ref. [24]).
  • 50. J. A. Clements. Endocrinol. Rev. 10, 393 (1989). (http://dx.doi.org/10.1210/edrv-10-4-393)
  • 51. R. W. Colman, A. H. Schmaier. Blood 90, 3819 (1997).
  • 52. D. Proud, A. P. Kaplan. Annu. Rev. Immunol. 6, 49 (1988). (http://dx.doi.org/10.1146/annurev.iy.06.040188.000405)
  • 53. R. A. Hendon, A. T. Tu. Biochemistry 20, 3517 (1981). (http://dx.doi.org/10.1021/bi00515a033)
  • 54. P. Utaisincharoen, S. P. Mackessy, R. A. Miller, A. T. Tu. J. Biol. Chem. 268, 21975 (1993).
  • 55. G. Datta, A. T. Tu. J. Peptide Res. 50, 443 (1997). (http://dx.doi.org/10.1111/j.1399-3011.1997.tb01207.x)
  • 56. M. Kita, H. Kigoshi, D. Uemura. Unpublished work.
  • 57. E. S. W. Wong, A. T. Papenfuss, C. M. Whittington, W. C. Warren, K. Belov. Mol. Biol. Evol. 29, 167 (2011). (http://dx.doi.org/10.1093/molbev/msr180)
  • 58. C. M. Whittington, A. T. Papenfuss, D. P. Locke, E. R. Mardis, R. K. Wilson, S. Abubucker, M. Mitreva, E. S. W. Wong, A. L. Hsu, P. W. Kuchel, K. Belov, W. C. Warren. Genome Biol. 11, R95 (2010). (http://dx.doi.org/10.1186/gb-2010-11-9-r95)
  • 59. A. Shevchenko, M. Wilm, O. Vorm, M. Mann. Anal. Chem. 68, 850 (1996). (http://dx.doi.org/10.1021/ac950914h)
  • 60. M. Kita, Y. Hirayama, M. Sugiyama, H. Kigoshi. Angew. Chem., Int. Ed. 50, 9871 (2011). (http://dx.doi.org/10.1002/anie.201103802)