CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2012, Vol. 84, No. 4, pp. 1069-1088

http://dx.doi.org/10.1351/PAC-CON-11-11-20

Published online 2012-03-19

Application of graph theory and topological models for the determination of fundamentals of the aromatic character of pi-conjugated hydrocarbons

Michał K. Cyrański1*, Arkadiusz Ciesielski1,2, Tadeusz M. Krygowski1 and Dorota K. Stępień1

1 Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
2 Institute of Biochemistry and Biophysics, Polish Academy of Science, Pawinskiego 5a, 02-106 Warsaw, Poland and Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

References

  • 1. R. J. Wilson. Introduction to Graph Theory, Longman, Essex (1996).
  • 2. I. Gutman, M. Milun, N. Trinajstić. J. Am. Chem. Soc. 99, 1692 (1977). (http://dx.doi.org/10.1021/ja00448a002)
  • 3. R. Chauvin, C. Lepetit, V. Maraval, L. Leroyer. Pure Appl. Chem. 82, 769 (2010). (http://dx.doi.org/10.1351/PAC-CON-09-11-07)
  • 4. M. Randić. J. Chem. Inf. Comput. Sci. 44, 365 (2004).
  • 5. N. Biggs, E. Lloyd, R. Wilson. Graph Theory, Oxford University Press, Oxford (1986).
  • 6. M. V. Diudea, M. S. Florescu, P. V. Khadikar. Molecular Topology and Its Applications, Eficon Press, Bucharest (2006).
  • 7. M. I. Monastyrsky. Topology in Molecular Biology (Biological and Medical Physics, Biomedical Engineering), Springer, Berlin (2007).
  • 8. A. T. Balaban, J. Devillers. Topological Indices and Related Descriptors in QSAR and QSPAR, CRC Press, Boca Raton (2000).
  • 9. M. Randić. Chem. Rev. 103, 3449 (2003). (http://dx.doi.org/10.1021/cr9903656)
  • 10. N. Trinajstić. Chemical Graph Theory, CRC Press, London (1992).
  • 11. M. B. Smith, J. March. March’s Advanced Organic Chemistry, Wiley-Interscience, New York (2001).
  • 12. A. Pross. Theoretical and Physical Principles of Organic Reactivity, John Wiley, New York (1995).
  • 13. E. D. Glendening, F. Weinhold. J. Comput. Chem. 19, 593 (1998). (http://dx.doi.org/10.1002/(SICI)1096-987X(19980430)19:6<593::AID-JCC3>3.0.CO;2-M)
  • 14. Y. Carissan, D. Hagebaum-Reignier, N. Goudard, S. Humbel. J. Phys. Chem. A 112, 13256 (2008). (http://dx.doi.org/10.1021/jp803813e)
  • 15. C. Lepetit, B. Silvi, R. Chauvin. J. Phys. Chem. A 107, 464 (2003). (http://dx.doi.org/10.1021/jp026521l)
  • 16. T. M. Krygowski, R. Anulewicz, J. Kruszewski. Acta Crystallogr., B 39, 732 (1983). (http://dx.doi.org/10.1107/S0108768183003328)
  • 17. R. Swinborn-Sheldrake, W. C. Herndon, I. Gutman. Tetrahedron Lett. 16, 755 (1975). (http://dx.doi.org/10.1016/S0040-4039(00)71975-7)
  • 18. S. G. Brush. Statistical Physics and the Atomic Theory of Matter from Boyle and Newton to Landau and Onsager, Princeton University Press, Princeton (1983).
  • 19. P. M. E. Shutler, H. M. Cheah. Eur. J. Phys. 19, 371 (1998). (http://dx.doi.org/10.1088/0143-0807/19/4/009)
  • 20. A. Ciesielski, T. M. Krygowski, M. K. Cyrański, M. A. Dobrowolski, A. Balaban. J. Chem. Inf. Model. 49, 369 (2009). (http://dx.doi.org/10.1021/ci800400b)
  • 21. M. K. Cyrański. Chem. Rev. 105, 3773 (2005). (http://dx.doi.org/10.1021/cr0300845)
  • 22. P. George, M. Trachtman, C. W. Bock, A. M. Brett. J. Chem. Soc., Perkin Trans. 2 1222 (1976). (http://dx.doi.org/10.1039/p29760001222)
  • 23. A. Ciesielski, T. M. Krygowski, M. K. Cyrański, A. Balaban. Phys. Chem. Chem. Phys. 13, 3737 (2011). (http://dx.doi.org/10.1039/c0cp01446j)
  • 24. J. -P. Malrieu, M. Gicquel, P. W. Fowler, C. Lepetit, J.-L. Heully, R. Chauvin. J. Phys. Chem. 112, 13203 (2008).
  • 25. M. J. S. Dewar, G. J. Gleicher. J. Am. Chem. Soc. 87, 635 (1965).
  • 26. H. P. Figeys. Tetrahedron 26, 5225 (1970). (http://dx.doi.org/10.1016/S0040-4020(01)98731-9)
  • 27. T. M. Krygowski. Tetrahedron Lett. 13, 1311 (1972).
  • 28. T. M. Krygowski, J. Kruszewski. Bull. Acad. Polon. Sci. 21, 509 (1972).
  • 29. Y. R. Mo, P. v. R. Schleyer. Chem.—Eur. J. 12, 2009 (2006). (http://dx.doi.org/10.1002/chem.200500376)
  • 30. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople. Gaussian, Inc., Wallingford, CT (2004).
  • 31. W. Winter, T. Butters. Acta Crystallogr., B 37, 1524 (1981). (http://dx.doi.org/10.1107/S0567740881006493)
  • 32. E. Vogel, H.-W. Engels, S. Matsumoto, J. Lex. Tetrahedron Lett. 23, 1797 (1982). (http://dx.doi.org/10.1016/S0040-4039(00)86744-1)
  • 33. M. Randić. Pure Appl. Chem. 55, 347 (1983). (http://dx.doi.org/10.1351/pac198855020347)
  • 34. E. Clar. Polycyclic Hydrocarbons, Vols. 1 and 2, Academic Press, London (1964).
  • 35. E. Clar. The Aromatic Sextet, John Wiley, Chichester (1972).
  • 36. H. Hosoya. Top. Curr. Chem. 153, 255 (1990). (http://dx.doi.org/10.1007/3-540-51505-4_27)
  • 37. A. Ciesielski, T. M. Krygowski, M. K. Cyrański, M. A. Dobrowolski, J.-I. Aihara. Phys. Chem. Chem. Phys. 11, 11447 (2009). (http://dx.doi.org/10.1039/b913895a)
  • 38. Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer. Chem. Rev. 105, 3842 (2005). (http://dx.doi.org/10.1021/cr030088+)