Pure Appl. Chem., 2012, Vol. 84, No. 12, pp. 2579-2607
http://dx.doi.org/10.1351/PAC-CON-12-05-04
Published online 2012-10-22
Bionanocomposites: Green sustainable materials for the near future
References
- 1. J. A. Brydson. Plastics Materials, Butterworth-Heinemann, Oxford (1999).
- 2. D. Rosato, D. Rosato. Plastics Engineered Product Design, Elsevier, Oxford (2003).
- 3. V. A. Prog. Rubber Plastics Technol. 17, 186 (2001). , V. V. Guseev.
- 4. S. Pilla. In Handbook of Bioplastics and Biocomposites Engineering Applications, S. Pilla (Ed.), pp. 1–15, Scrivener, Salem, MA (2011).
- 5. J. M. Berg, J. L. Tymoczko, L. Stryer. Biochemistry, Freeman, New York (2002).
- 6. H.-W. Heldt, B. Piechulla. Plant Biochemistry, Academic Press, London (2011).
- 7. T. D. Foust, K. N. Ibsen, D. C. Dayton, J. R. Hess, K. E. Kenney. In Biomass Recalcitrance: Deconstructing the Plant Cell Wall for Bioenergy, M. E. Himmel (Ed.), pp. 7–36, Blackwell, Singapore (2008).
- 8. K. CLEAN - Soil, Air, Water 36, 433 (2008). ( , T. Iwata. http://dx.doi.org/10.1002/clen.200700183)
- 9. D. S. Golomb, J. A. Fay. In Energy, Waste, and the Environment: A Geochemical Perspective. Special Publications 236, R. Giere, P. Stille (Eds.), pp. 153–167, Geological Society, London (2004).
- 10. S.-T. Yang. In Bioprocessing for Value-Added Products From Renewable Resources, S.-T. Yang (Ed.), pp. 1–24, Elsevier, London (2007).
- 11. A. N. Netravali. In Biodegradable and Sustainable Fibres, R. S. Blackburn (Ed.), pp. 271–309, CRC Press, Boca Raton (2005).
- 12. Y. J. Polym. Sci., Part A: Polym. Chem. 31, 983 (1993). ( , A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito. http://dx.doi.org/10.1002/pola.1993.080310418)
- 13. Y. J. Appl. Polym. Sci. 49, 1259 (1993). ( , A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito. http://dx.doi.org/10.1002/app.1993.070490715)
- 14. A. Mater. Sci. Eng. C 3, 109 (1995). ( , A. Usuki. http://dx.doi.org/10.1016/0928-4931(95)00110-7)
- 15. M. P. Rubber World 164, 46 (1941). .
- 16. E. Ind. Eng. Chem. 43, 679 (1951). ( . http://dx.doi.org/10.1021/ie50495a032)
- 17. A. K. Macromol. Mater. Eng. 276-277, 1 (2000). ( , M. Misra, G. Hinrichsen. http://dx.doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W)
- 18. S. S. Prog. Mater. Sci. 50, 962 (2005). , M. Bousmina.
- 19. M. Adv. Mater. 19, 1309 (2007). ( , P. Aranda, E. Ruiz-Hitzky. http://dx.doi.org/10.1002/adma.200602328)
- 20. E. Ruiz-Hitzky, M. Darder, P. Aranda. In Bio-Inorganic Hybrid Nanomaterials, E. Ruiz-Hitzky, K. Ariga, Y. M. Lvov (Eds.), pp. 1–40, Wiley-VCH, Weinheim (2008).
- 21. E. S. Medeiros, A. Dufresne, W. J. Orts. In Starches: Characterization, Properties, and Applications, A. C. Bertolini (Ed.), pp. 205–251, CRC Press, Boca Raton (2010).
- 22. B. E. Volcani. In Silicon and Siliceous Structures in Biological Systems, T. L. Simpson, B. E. Volkani (Eds.), pp. 157–200, Springer, New York (1981).
- 23. S. J. Mater. Chem. 5, 935 (1995). ( . http://dx.doi.org/10.1039/jm9950500935)
- 24. H. C. Nat. Prod. Rep. 25, 455 (2008). ( , X. H. Wang, W. Tremel, H. Ushijima, W. E. G. Muller. http://dx.doi.org/10.1039/b612515h)
- 25. E. J. Bone Miner. Metab. 27, 255 (2009). ( . http://dx.doi.org/10.1007/s00774-009-0061-y)
- 26. S. V. Chem. Commun. 47, 7567 (2011). ( . http://dx.doi.org/10.1039/c0cc05648k)
- 27. C. M. Curr. Opin. Solid State Mater. Sci. 1, 425 (1996). ( , G. D. Stucky. http://dx.doi.org/10.1016/S1359-0286(96)80035-0)
- 28. E. Appl. Microbiol. Biotechnol. 84, 607 (2009). ( , C. Groger, K. Lutz, P. Richthammer, K. Spinde, M. Sumper. http://dx.doi.org/10.1007/s00253-009-2140-3)
- 29. D. C. Trends Biotechnol. 17, 230 (1999). ( . http://dx.doi.org/10.1016/S0167-7799(99)01309-8)
- 30. S. I. Science 277, 1242 (1997). ( , P. V. Braun. http://dx.doi.org/10.1126/science.277.5330.1242)
- 31. J. J. Phys.: Condens. Matter 13, R673 (2001). ( , T. Coradin, C. Roux. http://dx.doi.org/10.1088/0953-8984/13/33/202)
- 32. M. Ann. Rev. Mater. Res. 34, 373 (2004). ( , C. Tamerler, D. T. Schwartz, F. O. Baneyx. http://dx.doi.org/10.1146/annurev.matsci.34.040203.121025)
- 33. C. H. J. Mater. Chem. 14, 2124 (2004). ( , H. Golfen. http://dx.doi.org/10.1039/b401420k)
- 34. M. J. Mater. Sci. Eng. R 58, 77 (2007). ( , X. Cheng, S. S. Jee, R. Kumar, Y. Y. Kim, M. J. Kaufman, E. P. Douglas, L. B. Gower. http://dx.doi.org/10.1016/j.mser.2007.05.001)
- 35. M. B. Chem. Rev. 108, 4935 (2008). ( , K. H. Sandhage, R. R. Naik. http://dx.doi.org/10.1021/cr8002328)
- 36. Y. A. Shchipunov. In Bio-Inorganic Hybrid Nanomaterials, E. Ruiz-Hitzky, K. Ariga, Y. Lvov (Eds.), pp. 75–117, Wiley-VCH, Weinheim (2008).
- 37. S. Chem. Mater. 20, 821 (2008). ( , Y. Sierra-Sastre, S. S. Mark, C. A. Batt. http://dx.doi.org/10.1021/cm702152a)
- 38. C. C. J. Chem. Soc., Faraday Trans. 88, 2915 (1992). ( , L. Yun. http://dx.doi.org/10.1039/ft9928802915)
- 39. N. Colloid Polym. Sci. 275, 378 (1997). ( , S. Peker, U. Kokturk, H. Yilmaz. http://dx.doi.org/10.1007/s003960050095)
- 40. Y. A. Shchipunov. In Encyclopedia of Surface and Colloid Science, A. T. Hubbard (Ed.), pp. 2997–3017, Marcel Dekker, New York (2002).
- 41. S. Ramakrishna, Z.-M. Huang, G. V. Kumar, A. W. Batchelor, J. Mayer. An Introduction to Biocomposites, Imperial College Press, London (2004).
- 42. S. Guilbert, B. Cuq. In Handbook of Biodegradable Polymers, C. Bastioli (Ed.), pp. 339–384, Rapra Technology, Shropshire (2005).
- 43. J. K. Macromol. Mater. Eng. 295, 975 (2010). ( , S. H. Ahn, C. S. Lee, A. K. Mohanty, M. Misra. http://dx.doi.org/10.1002/mame.201000095)
- 44. M. Mater. Sci. Eng. R 28, 1 (2000). ( , P. Dubois. http://dx.doi.org/10.1016/S0927-796X(00)00012-7)
- 45. S. S. Prog. Polym. Sci. 28, 1539 (2003). , M. Okamoto.
- 46. Y. C. Ke, P. Stroeve. Polymer-Layered and Silica Nanocomposites, Elsevier, Amsterdam (2005).
- 47. S. Prog. Polym. Sci. 33, 1119 (2008). ( , C. D. Papaspyrides. http://dx.doi.org/10.1016/j.progpolymsci.2008.07.008)
- 48. P. Gomez-Romero, C. Sanchez. In Functional Hybrid Materials, P. Gomez-Romero, C. Sanchez (Eds.), pp. 1–14, Wiley-VCH, Weinheim (2004).
- 49. Y. Y. Li, J. Li, B. Nakajima. In Biomaterials Fabrication and Processing Handbook, P. K. Chu, X. Liu (Eds.), pp. 193–215, CRC Press, Boca Raton (2008).
- 50. H. R. Fischer, J. J. De Flieger. In Biodegradable Polymer Blends and Composites From Renewable Resources, L. Yu (Ed.), pp. 369–387, John Wiley, Hoboken, NJ (2009).
- 51. J. Chem. Soc. Rev. 41, 1111 (2012). ( , Q. Cheng, Z. Tang. http://dx.doi.org/10.1039/c1cs15106a)
- 52. J. K. Kim, K. Pal, V. Sridhar. In Recent Advances in Elastomeric Nanocomposites. Advanced Structured Materials, V. Mittal, J. K. Kim, K. Pal (Eds.), pp. 3–55, Springer, Berlin (2011).
- 53. A. Nano Today 5, 48 (2010). ( , W. R. Caseri, S. E. Pratsinis. http://dx.doi.org/10.1016/j.nantod.2009.12.007)
- 54. W. J. Colloid Interface Sci. 26, 62 (1968). ( , A. Fink, E. Bohn. http://dx.doi.org/10.1016/0021-9797(68)90272-5)
- 55. K. Colloids Surf. 50, 321 (1990). ( , F. J. Arriagada. http://dx.doi.org/10.1016/0166-6622(90)80273-7)
- 56. L. M. Mater. Today 7, 26 (2004). ( . http://dx.doi.org/10.1016/S1369-7021(04)00080-X)
- 57. M. C. Chem. Rev. 104, 293 (2004). ( , D. Astruc. http://dx.doi.org/10.1021/cr030698+)
- 58. E. J. Fernandez, M. Monge. In Modern Supramolecular Gold Chemistry: Gold-Metal Interactions and Applications, A. Laguna (Ed.), pp. 131–179, Wiley-VCH, Weinheim (2008).
- 59. C. Louis. In Synthesis of Solid Catalysts, K. P. de Jong (Ed.), pp. 369–391, Wiley-VCH, Weinheim (2009).
- 60. X. Chem. Rev. 107, 2891 (2007). ( , S. S. Mao. http://dx.doi.org/10.1021/cr0500535)
- 61. M. Niederberger, N. Pinna. Metal Oxide Nanoparticles in Organic Solvents. Synthesis, Formation, Assembly and Application, Springer, London (2009).
- 62. A. I. Gusev, A. A. Rempel. Nanocrystalline Materials, Cambridge International Science Publishing, Cambridge (2004).
- 63. J. A. Hollingsworth, V. I. Klimov. In Nanocrystal Quantum Dots, V. I. Klimov (Ed.), pp. 1–61, CRC Press, Boca Raton (2010).
- 64. E. M. Int. J. Orthop. Res. 25, 11 (2007). ( , K. S. Anseth, J. J. J. P. van den Beucken, C. K. Chan, B. Ercan, J. A. Jansen, C. T. Laurencin, W. J. Li, R. Murugan, L. S. Nair, S. Ramakrishna, R. S. Tuan, T. J. Webster, A. G. Mikos. http://dx.doi.org/10.1002/jor.20305)
- 65. D. Eichert, C. Drouet, H. Sfihia, C. Rey, C. Combes. Nanocrystalline Apatite-Based Biomaterials, Nova Science, New York (2009).
- 66. C. Laurent, A. Peigney. In Encyclopedia of Nanoscience and Nanotechnology, H. S. Nalwa (Ed.), pp. 635–653, American Scientific, North Lewis Way, CA (2004).
- 67. X. L. Mater. Sci. Eng. R 49, 89 (2005). ( , Y. W. Mai, X. P. Zhou. http://dx.doi.org/10.1016/j.mser.2005.04.002)
- 68. A. Krueger. Carbon Materials and Nanotechnology, Wiley-VCH, Weinheim (2010).
- 69. A. Bascones, J. M. Vega, N. Olmo, J. Turnay, J. G. Gavilanes, M. A. Lizarbe. In Polymeric Biomaterials, S. Dumitriu (Ed.), pp. 426–454, Marcel Dekker, New York (2002).
- 70. M. Chem. Mater. 18, 1602 (2006). ( , M. Lopez-Blanco, P. Aranda, A. J. Aznar, J. Bravo, E. Ruiz-Hitzky. http://dx.doi.org/10.1021/cm0523642)
- 71. E. J. Mater. Chem. 11, 86 (2001). ( . http://dx.doi.org/10.1039/b003197f)
- 72. M. F. Brigatti, E. Galan, B. K. G. Theng. In Handbook of Clay Science. Developments in Clay Science, F. Bergaya, B. K. G. Theng, G. Lagaly (Eds.), pp. 19–86, Elsevier, Amsterdam (2006).
- 73. N. Langmuir 24, 7184 (2008). ( , J. S. van Duijneveldt. http://dx.doi.org/10.1021/la800849y)
- 74. M. Appl. Clay Sci. 28, 199 (2005). ( , M. Colilla, E. Ruiz-Hitzky. http://dx.doi.org/10.1016/j.clay.2004.02.009)
- 75. M. Adv. Mater. 23, 5262 (2011). ( , P. Aranda, M. L. Ferrer, F. M. Gutierrez, E. Ruiz-Hitzky. http://dx.doi.org/10.1002/adma.201101617)
- 76. E. Adv. Mater. 21, 4167 (2009). ( , M. Darder, P. Aranda, M. A. M. del Burgo, G. del Real. http://dx.doi.org/10.1002/adma.200900181)
- 77. Y. Habibi, A. Dufresne. In Handbook of Nanophysics. Nanoparticles and Quantum Dots, K. D. Sattler (Ed.), pp. 10-1–10-17, CRC Press, Boca Raton (2011).
- 78. S. Kalia, B. S. Kaith, S. Vashistha. In Handbook of Bioplastics and Biocomposites Engineering Applications, S. Pilla (Ed.), pp. 453–470, Scrivener, Salem, MA (2011).
- 79. Y. Krishnamachari. In Nano- and Biocomposites, A. K. T. Lau, F. Hussain, K. Lafdi (Eds.), pp. 157–191, CRC Press, Boca Raton (2011).
- 80. J. Soulestin, K. Prashantha, M. F. Lacrampe, P. Krawczak. In Handbook of Bioplastics and Biocomposites Engineering Applications, S. Pilla (Ed.), pp. 77–120, Scrivener, Salem, MA (2011).
- 81. L. A. Polym. Adv. Technol. 18, 1 (2007). ( , M. Sepehr, E. Boccaleri. http://dx.doi.org/10.1002/pat.852)
- 82. D. Jia, L. Liu, X. Wang, B. Guo, Y. Luo. In Biodegradable Polymer Blends and Composites From Renewable Resources, L. Yu (Ed.), pp. 415–433, John Wiley, Hoboken, NJ (2009).
- 83. R. J. Mater. Sci. 43, 3058 (2008). ( , P. Torley, P. Halley. http://dx.doi.org/10.1007/s10853-007-2434-8)
- 84. J. W. Crit. Rev. Food Sci. Nutr. 47, 411 (2007). ( , P. K. W. Ng. http://dx.doi.org/10.1080/10408390600846366)
- 85. M. Mater. Sci. Technol. 24, 1100 (2008). ( , P. Aranda, A. I. Ruiz, F. M. Fernandes, E. Ruiz-Hitzky. http://dx.doi.org/10.1179/174328408X341780)
- 86. J. P. J. Mater. Sci. Lett. 21, 779 (2002). ( , P. Li, K. D. Yao. http://dx.doi.org/10.1023/A:1015701809579)
- 87. J. P. J. Appl. Polym. Sci. 86, 1189 (2002). ( , P. Li, Y. L. Ma, K. D. Yao. http://dx.doi.org/10.1002/app.11062)
- 88. M. Chem. Mater. 15, 3774 (2003). ( , M. Colilla, E. Ruiz-Hitzky. http://dx.doi.org/10.1021/cm0343047)
- 89. M. Y. Enzyme Microbiol. Technol. 36, 75 (2005). ( , R. S. Juang. http://dx.doi.org/10.1016/j.enzmictec.2004.06.013)
- 90. J. W. J. Agric. Food Chem. 54, 5814 (2006). ( , S. I. Hong, H. M. Park, P. K. W. Ng. http://dx.doi.org/10.1021/jf060658h)
- 91. J. W. Food Sci. Biotechnol. 15, 925 (2006). .
- 92. P. Carbohydr. Polym. 67, 155 (2007). ( , D. Aht-Ong, D. Pentrakoon, K. Srikulkit. http://dx.doi.org/10.1016/j.carbpol.2006.05.012)
- 93. L. J. Hazard. Mater. 147, 979 (2007). ( , A. Wang. http://dx.doi.org/10.1016/j.jhazmat.2007.01.145)
- 94. J. P. React. Funct. Polym. 67, 780 (2007). ( , C. Z. Wang, X. X. Wang, H. Y. Wang, H. Zhuang, K. D. Yao. http://dx.doi.org/10.1016/j.reactfunctpolym.2006.12.002)
- 95. D. Acta Biomater. 5, 93 (2009). ( , A. P. Kumar, R. P. Singh. http://dx.doi.org/10.1016/j.actbio.2008.08.007)
- 96. A. Carbohydr. Polym. 87, 53 (2012). ( , L. A. Berglund. http://dx.doi.org/10.1016/j.carbpol.2011.07.019)
- 97. I. Appl. Clay Sci. 55, 131 (2012). ( , C. Aguzzi, G. Sandri, M. C. Bonferoni, M. Mori, P. Cerezo, R. Sanchez, C. Viseras, C. Caramella. http://dx.doi.org/10.1016/j.clay.2011.11.006)
- 98. Q. Biosensors Bioelectron. 22, 816 (2007). ( , D. Shan, H. Xue, Y. He, S. Cosnier. http://dx.doi.org/10.1016/j.bios.2006.03.002)
- 99. Q. Mater. Sci. Eng. C 28, 1372 (2008). ( , Q. Li, D. Shan, Q. Fan, H. Xue. http://dx.doi.org/10.1016/j.msec.2008.03.001)
- 100. T. J. Phys. Chem. C 111, 12730 (2007). ( , M. Szekeres, I. Dekany, C. Jackers, S. De Feyter, C. T. Johnston, R. A. Schoonheydt. http://dx.doi.org/10.1021/jp0722861)
- 101. Y. A. Green Chem. 11, 1758 (2009). ( , N. Ivanova, V. Silant’ev. http://dx.doi.org/10.1039/b914548f)
- 102. J. J. Langmuir 23, 1995 (2006). ( , J. C. Wei, T. Y. Juang, W. C. Tsai. http://dx.doi.org/10.1021/la062013h)
- 103. A. Leuteritz, B. Kretzschmar, D. Pospiech, F. R. Costa, U. Wagenknecht, G. Heinrich. In Polymeric Nanostructures and Their Applications, H. S. Nalwa, (Ed.), pp. 99–151, American Scientific, North Lewis Way, CA (2007).
- 104. J. H. Choy, J. M. Oh, S. J. Choi. In Bio-Inorganic Hybrid Nanomaterials, E. Ruiz-Hitzky, K. Ariga, Y. Lvov (Eds.), pp. 40–418, Wiley-VCH, Weinheim (2008).
- 105. C. Forano, T. Hibino, F. Leroux, C. Taviot-Gueho. In Handbook of Clay Science. Developments in Clay Science, F. Bergaya, B. K. G. Theng, G. Lagaly (Eds.), pp. 1021–1095, Elsevier, Amsterdam (2006).
- 106. D. Voet, J. G. Voet, C. W. Pratt. Fundamentals of Biochemistry. Life at the Molecular Level, John Wiley, Weinheim (2008).
- 107. D. Klemm, B. Philipp, T. Heinze, U. Heinze, W. Wagenknecht. Comprehensive Cellulose Chemistry. Fundamentals and Analytical Methods, Wiley-VCH, Weinheim (1998).
- 108. K. Mar. Biotechnol. 8, 203 (2006). ( . http://dx.doi.org/10.1007/s10126-005-0097-5)
- 109. R. A. A. Muzzarelli. Chitin, Pergamon, Oxford (1977).
- 110. G. A. F. Roberts. Chitin Chemistry, MacMillan Education, Basingstoke, UK (1992).
- 111. T. Liebert. Cellulose Solvents: For Analysis, Shaping and Chemical Modification, ACS Symposium Series No. 1033, p. 3, American Chemical Society, Washington, DC (2010).
- 112. M. Prog. Polym. Sci. 31, 603 (2006). ( . http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001)
- 113. M. N. V. R. Chem. Rev. 104, 6017 (2004). ( , R. A. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, A. J. Domb. http://dx.doi.org/10.1021/cr030441b)
- 114. J. Polym. Degrad. Stabil. 59, 245 (1998). ( . http://dx.doi.org/10.1016/S0141-3910(97)00168-7)
- 115. Bioplastics consumption to reach 2 million tons by 2018. http://www.plastemart.com/Plastic-Technical-Article.asp?LiteratureID=1454 (2012).
- 116. H. F. Zobell, A. M. Stephen. In Food Polysaccharides and Their Applications, A. M. Stephen (Ed.), pp. 19–97, Marcel Dekker, New York (1995).
- 117. R. L. Shogren. In Biopolymers From Renewable Resources, D. L. Kaplan (Ed.), pp. 30–46, Springer, Berlin (1998).
- 118. Y. A. Compos. Interfaces 11, 587 (2005). ( , T. Y. Karpenko, A. V. Krekoten. http://dx.doi.org/10.1163/1568554053148816)
- 119. Y. A. J. Colloid Interface Sci. 287, 373 (2005). ( , T. Y. Karpenko, A. V. Krekoten, I. V. Postnova. http://dx.doi.org/10.1016/j.jcis.2005.02.004)
- 120. M. Chem. Mater. 17, 1969 (2005). ( , M. Lopez-Blanco, P. Aranda, F. Leroux, E. Ruiz-Hitzky. http://dx.doi.org/10.1021/cm0483240)
- 121. Y. Green Chem. 10, 183 (2008). ( , T. Coradin. http://dx.doi.org/10.1039/b713438j)
- 122. Y. H. Adv. Mater. 20, 4154 (2008). , H. Lee, Y. B. Kim, J. Y. Kim, T. Hyeon, H. Park, P. B. Messersmith, T. G. Park.
- 123. M. M. Biomacromolecules 10, 589 (2009). ( , A. Kumar, S. Mousa, T. J. Park, P. Ajayan, N. Kubotera, S. A. Mousa, R. J. Linhardt. http://dx.doi.org/10.1021/bm801266t)
- 124. P. J. Appl. Polym. Sci. 102, 5162 (2006). ( , A. Ramanan, A. R. Ray. http://dx.doi.org/10.1002/app.24706)
- 125. H. J. Nanomater. 1 (2008). , S. Heinemann, C. Heinemann, P. Simon, V. V. Bazhenov, N. P. Shapkin, R. Born, K. R. Tabachnick, T. Hanke, H. Worch.
- 126. H.-Y. Cheung. In Nano- and Biocomposites, A. K. T. Lau, F. Hussain, K. Lafdi (Eds.), pp. 139–156, CRC Press, Boca Raton (2010).
- 127. A. Nano Today 5, 254 (2010). ( , S. Ravindran. http://dx.doi.org/10.1016/j.nantod.2010.05.005)
- 128. J. G. Prog. Polym. Sci. 35, 1093 (2010). ( , T. R. Scheibel. http://dx.doi.org/10.1016/j.progpolymsci.2010.04.005)
- 129. S. Thomas, S. A. Paul, L. A. Pothan, B. Deepa. In Cellulose Fibers: Bio- and Nano-Polymer Composites. Green Chemistry and Technology, S. Kalia, B. S. Kaith, I. Kaur (Eds.), pp. 3–42, Springer, Berlin (2011).
- 130. M. Kikuchi, Y. Koyama, F. Edamura, A. Irie, S. Sotome, S. Itoch, T. Takakuda, K. Shinomiya, S. Tanaka. In Advances in Nanocomposites: Synthesis, Characterization and Industrial Applications, B. S. R. Reddy (Ed.), pp. 181–194, InTech, Rijeka, Croatia (2011).
- 131. M. Gomes, H. Azavedo, P. Malafaya, S. Silva, J. Oliveira, G. Silva, R. Sousa, J. Mano, R. Reis. In Tissue Engineering, C. van Blitterswijk (Ed.), pp. 145–192, Academic Press, London (2008).
- 132. I. S. Arvanitoyannis, P. Tserkezou. In Biodegradable Polymer Blends and Composites From Renewable Resources, Y. Long (Ed.), pp. 55–86, John Wiley, Hoboken, NJ (2009).
- 133. J. P. Adv. Mater. 10, 1185 (1998). ( , S. R. Fahnestock, I. Termonia, K. C. H. Gardner. http://dx.doi.org/10.1002/(SICI)1521-4095(199810)10:15<1185::AID-ADMA1185>3.0.CO;2-T)
- 134. G. N. Br. Ceram. Trans. 103, 101 (2004). ( , A. Tampieri. http://dx.doi.org/10.1179/096797804225012828)
- 135. L. C. Chem. Rev. 108, 4754 (2008). ( , C. J. Newcomb, S. R. Kaltz, E. D. Spoerke, S. I. Stupp. http://dx.doi.org/10.1021/cr8004422)
- 136. J. M. Guenet. Thermoreversible Gelation of Polymers and Biopolymers, Academic Press, London (1992).
- 137. F. J. Francis (Ed.). Wiley Encyclopedia of Food Science and Technology, pp. 1183–1188, Wiley Interscience, New York (2000).
- 138. F. A. Prog. Biotechol. 23, 133 (2003). ( . http://dx.doi.org/10.1016/S0921-0423(03)80005-9)
- 139. K. Adv. Polym. Sci. 130, 1 (1997). .
- 140. H. J. Adv. Colloid Interface Sci. 50, 1 (1994). ( , C. Dieschbourg. http://dx.doi.org/10.1016/0001-8686(94)80021-9)
- 141. L. J. Sol-Gel Sci. Technol. 21, 115 (2001). ( , K. Tsuru, S. Hayakawa, A. Osaka. http://dx.doi.org/10.1023/A:1011226104173)
- 142. S. Adv. Func. Mater. 13, 189 (2003). ( , U. Schwarz, R. Kniep. http://dx.doi.org/10.1002/adfm.200390029)
- 143. T. Colloids Surf., B 35, 53 (2004). ( , S. Bah, J. Livage. http://dx.doi.org/10.1016/j.colsurfb.2004.02.008)
- 144. J. J. Non-Cryst. Solids 347, 273 (2004). ( , Y. Martinez, R. Quijada, M. Yazdani-Pedram. http://dx.doi.org/10.1016/j.jnoncrysol.2004.09.017)
- 145. F. Chem. Mater. 22, 398 (2009). ( , O. Durupthy, B. Fayolle, T. Coradin, M. Schmutz, J. Maquet, J. Livage, N. Steunou. http://dx.doi.org/10.1021/cm902836g)
- 146. S. Y. Biotechnol. Bioeng. 49, 1 (1996). ( . http://dx.doi.org/10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.3.CO;2-1)
- 147. Y. Macromol. Rapid Commun. 21, 117 (2000). ( , H. Tsuji. http://dx.doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X)
- 148. R. A. J. J. Appl. Microbiol. 102, 1437 (2007). ( , D. J. Hill, M. A. Kenward, C. D. Williams, I. Radecka. http://dx.doi.org/10.1111/j.1365-2672.2007.03335.x)
- 149. K. Sudesh, H. Abe. Practical Guide to Microbial Polyhydroxyalkanoates, Smithers, Shropshire (2010).
- 150. E. J. Chem. Technol. Biotechnol. 85, 732 (2010). ( , T. Keshavarz, I. Roy. http://dx.doi.org/10.1002/jctb.2392)
- 151. S. J. Chem. Technol. Biotechnol. 82, 233 (2007). ( , T. Keshavarz, I. Roy. http://dx.doi.org/10.1002/jctb.1667)
- 152. U.S. Environmental Protection Agency. http://www.epa.gov/greenchemistry/pubs/pgcc/winners/sba05.html (2012).
- 153. MedicalEngineering.Co.UK. http://tissue.medicalengineer.co.uk/pages/tissue-engineering/polyhydroxyalkanoates-for-tissue-engineering.html (2012).
- 154. C. Biomaterials 12, 841 (1991). ( , E. T. Tanner, W. Bonfield. http://dx.doi.org/10.1016/0142-9612(91)90072-I)
- 155. J. Mater. Sci. Eng. C 20, 101 (2002). ( , M. Wang. http://dx.doi.org/10.1016/S0928-4931(02)00019-X)
- 156. E. Adv. Mater. 14, 775 (2002). ( , S. Mann. http://dx.doi.org/10.1002/1521-4095(20020605)14:11<775::AID-ADMA775>3.0.CO;2-0)
- 157. J. Physica E 16, 157 (2003). ( . http://dx.doi.org/10.1016/S1386-9477(02)00670-7)
- 158. N. C. Biochemistry 42, 7259 (2003). ( . http://dx.doi.org/10.1021/bi030079v)
- 159. F. A. Science 321, 1795 (2008). ( , A. L. Palmer, H. F. Sleiman. http://dx.doi.org/10.1126/science.1154533)
- 160. C. Biochemistry 48, 1663 (2009). ( , Y. Liu, H. Yan. http://dx.doi.org/10.1021/bi802324w)
- 161. S. J. Phys. Chem. Lett. 1, 1994 (2010). ( , D. Bhatia, F. C. Simmel, Y. Krishnan. http://dx.doi.org/10.1021/jz1004957)
- 162. C. Curr. Opin. Solid State Mater. Sci. 15, 262 (2011). ( , A. Travesset. http://dx.doi.org/10.1016/j.cossms.2011.07.002)
- 163. L. Adv. Colloid Interface Sci. 111, 133 (2004). ( , L. Cao, Y. Liu, D. Zhu. http://dx.doi.org/10.1016/j.cis.2004.09.004)
- 164. M. Acc. Chem. Res. 35, 847 (2002). ( , M. Rao, K. N. Ganesh. http://dx.doi.org/10.1021/ar010094x)
- 165. S. Nat. Biotechnol. 21, 1171 (2003). ( . http://dx.doi.org/10.1038/nbt874)
- 166. K. ACS Nano 4, 649 (2010). ( , S. Malik, C. Richert. http://dx.doi.org/10.1021/nn900886q)
- 167. Y. Nanoscale 2, 1767 (2010). ( , T. Fujigaya, Y. Niidome, N. Nakashima. http://dx.doi.org/10.1039/c0nr00145g)
- 168. N. Nakashima, Y. Tanaka, T. Fujigaya. In Handbook of Carbon Nanomaterials. Synthesis and Supramolecular Systems, F. D’Souza, K. M. Kadish (Eds.), pp. 245–269, World Scientific, Singapore (2011).
- 169. J. H. Angew. Chem., Int. Ed. 39, 4041 (2000). , S. Y. Kwak, Y. J. Jeong, J. S. Park.
- 170. T. H. Nano Today 2, 26 (2007). ( , H. Li. http://dx.doi.org/10.1016/S1748-0132(07)70056-7)
- 171. N. L. Chem. Rev. 105, 1547 (2005). ( , C. A. Mirkin. http://dx.doi.org/10.1021/cr030067f)
- 172. A. Chem. Rev. 108, 109 (2007). ( , B. D. Leca-Bouvier, L. J. Blum. http://dx.doi.org/10.1021/cr0684467)
- 173. N. Biotechnol. Annu. Rev. 8, 85 (2002). ( , S. Hamels, F. De Longueville, I. Alexandre, J. L. Gala, F. Brasseur, J. Remacle. http://dx.doi.org/10.1016/S1387-2656(02)08005-5)
- 174. S. R. Chowdhury, S. Kar, C. S. Ha. In Polymeric Nanostructures and Their Applications, H. S. Nalwa (Ed.), pp. 201–241, American Scientific, North Lewis Way, CA (2008).
- 175. L. A. Utracki. Clay-Containing Polymeric Nanocomposites, Rapra Technology, Shawbury, UK (2004).
- 176. C. J. Polym. Sci., Part B: Polym. Phys. 50, 669 (2012). ( , T. Coradin. http://dx.doi.org/10.1002/polb.23061)
- 177. F. Adv. Mater. 13, 11 (2001). ( . http://dx.doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N)
- 178. K. Sci. Technol. Adv. Mater. 9, 1 (2008). ( , J. P. Hill, M. V. Lee, A. Vinu, R. Charvet, S. Acharya. http://dx.doi.org/10.1088/1468-6996/9/1/014109)
- 179. W. Nano Today 4, 482 (2009). ( , M. J. Campolongo, S. J. Tan, D. Luo. http://dx.doi.org/10.1016/j.nantod.2009.10.005)
- 180. Y. Chem. Mater. 20, 848 (2008). ( , A. S. Angelatos, F. Caruso. http://dx.doi.org/10.1021/cm7024813)
- 181. I. Polym. Degrad. Stabil. 95, 2126 (2010). ( , M. Dottori, E. Fortunati, S. Mattioli, J. M. Kenny. http://dx.doi.org/10.1016/j.polymdegradstab.2010.06.007)
- 182. B. Acta Mater. 46, 737 (1998). ( , J. M. Miller, B. C. Dave, J. S. Valentine, J. I. Zink. http://dx.doi.org/10.1016/S1359-6454(97)00254-1)
- 183. B. A. Prog. Polym. Sci. 33, 40 (2008). ( , R. Tenne. http://dx.doi.org/10.1016/j.progpolymsci.2007.07.004)
- 184. D. J. Mater. Chem. 16, 1013 (2006). ( , T. Coradin, O. Lev, J. Livage. http://dx.doi.org/10.1039/b512706h)
- 185. T. Acc. Chem. Res. 40, 819 (2007). ( , J. Livage. http://dx.doi.org/10.1021/ar068129m)
- 186. I. Trends Biotechnol. 18, 282 (2000). ( , A. Ballesteros. http://dx.doi.org/10.1016/S0167-7799(00)01457-8)
- 187. V. B. Crit. Rev. Anal. Chem. 36, 73 (2006). ( , V. S. Tripathi, H. X. Ju. http://dx.doi.org/10.1080/10408340600713652)
- 188. Biomineralization, Wiley-VCH, Weinheim (2000).
- 189. Handbook of Biomineralization. Biological Aspects and Structure Formation, Wiley-VCH, Weinheim (2007).
- 190. L. Nature 389, 912 (1997). ( , S. Weiner. http://dx.doi.org/10.1038/40010)
- 191. J. Science 309, 275 (2005). ( , J. C. Weaver, M. S. Thanawala, V. C. Sundar, D. E. Morse, P. Fratzl. http://dx.doi.org/10.1126/science.1112255)
- 192. D. P. Methods Cell Biol. 90, 61 (2008). ( , Y. F. Dufrene, M. J. Doktycz, M. Hildebrand. http://dx.doi.org/10.1016/S0091-679X(08)00804-2)
- 193. T. Adv. Mater. 14, 869 (2002). ( , A. Sugawara, N. Hosoda. http://dx.doi.org/10.1002/1521-4095(20020618)14:12<869::AID-ADMA869>3.0.CO;2-E)
- 194. Y. N. Laser Phys. 21, 630 (2011). ( , A. V. Bezverbny, O. A. Bukin, S. S. Voznesensky, S. S. Golik, A. Y. Mayor, Y. A. Shchipunov, I. G. Nagorny. http://dx.doi.org/10.1134/S1054660X11050136)
- 195. R. K. Iler. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surfaces Properties, and Biochemistry, John Wiley, New York (1979).
- 196. Silicon and Siliceous Structures in Biological Systems, Springer, New York (1981).
- 197. E. G. J. Nanosci. Nanotechnol. 5, 68 (2005). ( , Q. Y. Sun, T. P. M. Beelen, S. Hazelaar, W. W. C. Gieskes, R. A. van Santen, N. A. J. M. Sommerdijk. http://dx.doi.org/10.1166/jnn.2005.010)
- 198. A. W. J. Mater. Chem. 17, 415 (2007). ( , Y. R. Ma, H. Colfen. http://dx.doi.org/10.1039/b611918m)
- 199. D. E. Biomaterials 28, 4178 (2007). ( . http://dx.doi.org/10.1016/j.biomaterials.2007.06.017)
- 200. J. H. Biotechnol. Annu. Rev. 9, 1 (2003). ( , L. L. Ilag. http://dx.doi.org/10.1016/S1387-2656(03)09001-X)
- 201. Q. Curr. Opin. Solid State Mater. Sci. 8, 111 (2004). ( , E. G. Vrieling, R. A. van Santen, N. A. J. M. Sommerdijk. http://dx.doi.org/10.1016/j.cossms.2004.01.005)
- 202. S. J. Non-Cryst. Solids 147-148, 739 (1992). ( , S. Shtelzer, S. Rappoport, D. Avnir, M. Ottolenghi. http://dx.doi.org/10.1016/S0022-3093(05)80708-2)
- 203. M. L. J. Sol-Gel Sci. Technol. 26, 1169 (2003). ( , F. Del Monte, C. R. Mateo, J. Gomez, D. Levy. http://dx.doi.org/10.1023/A:1020791631350)
- 204. T. M. J. Sol-Gel Sci. Technol. 31, 349 (2004). ( , B. Hosticka, M. E. Power, L. Cemke, R. Hull, P. M. Norris. http://dx.doi.org/10.1023/B:JSST.0000048015.39441.ee)
- 205. S. Acc. Chem. Res. 40, 885 (2007). ( , D. Brandhuber, N. Husing. http://dx.doi.org/10.1021/ar6000318)
- 206. S. S. Ray, M. Bousmina. In Polymeric Nanostructures and Their Applications, H. S. Nalwa (Ed.), pp. 1–97, American Scientific, North Lewis Way, CA (2007).
- 207. J. G. Winterowd, P. A. Sandford. In Food Polysaccharides and Their Applications, A. M. Stephen (Ed.), pp. 441–462, Marcel Dekker, New York (1995).
- 208. E. Khor. Chitin: Fulfilling a Biomaterials Promise, Elsevier, Amsterdam (2001).
- 209. E. Curr. Opin. Solid State Mater. Sci. 6, 313 (2002). ( . http://dx.doi.org/10.1016/S1359-0286(02)00002-5)
- 210. P. A. Sandford. In Chitin and Chitosan. Sources, Chemistry, Biochemistry, Physical Properties and Applications, G. Skjak-Braek, T. Anthonsen, P. A. Sandford (Eds.), pp. 51–69, Elsevier, London (1989).
- 211. R. N. Crit. Rev. Food Sci. Nutr. 43, 61 (2003). ( , F. S. Kittur. http://dx.doi.org/10.1080/10408690390826455)
- 212. S. Biotechnol. Annu. Rev. 2, 237 (1996). ( . http://dx.doi.org/10.1016/S1387-2656(08)70012-7)
- 213. K. Polym. Degrad. Stabil. 59, 117 (1998). ( . http://dx.doi.org/10.1016/S0141-3910(97)00160-2)
- 214. S. Adv. Drug Delivery Rev. 56, 1467 (2004). ( , S. J. McClure. http://dx.doi.org/10.1016/j.addr.2004.02.007)
- 215. K. Y. Chem. Rev. 101, 1869 (2001). ( , D. J. Mooney. http://dx.doi.org/10.1021/cr000108x)
- 216. D. K. J. Macromol. Sci., Rev. Macromol. C 40, 69 (2000). ( , A. R. Ray. http://dx.doi.org/10.1081/MC-100100579)
- 217. E. V. Colloid J. 64, 372 (2002). ( , Y. A. Shchipunov. http://dx.doi.org/10.1023/A:1015985229667)
- 218. J. Eur. J. Pharm. Biopharm. 57, 35 (2004). ( , M. Reist, J. M. Mayer, O. Felt, R. Gurny. http://dx.doi.org/10.1016/S0939-6411(03)00160-7)
- 219. A. Langmuir 23, 10950 (2007). ( , L. David, C. Rochas, A. Domard, T. Delair. http://dx.doi.org/10.1021/la7008545)
- 220. Y. A. Compos. Interf. 16, 251 (2009). ( , I. V. Postnova. http://dx.doi.org/10.1163/156855409X447093)
- 221. Y. A. Mendeleev Commun. 19, 149 (2009). ( , N. A. Ivanova, S. A. Sarin. http://dx.doi.org/10.1016/j.mencom.2009.05.012)
- 222. Y. Green Chem. 12, 1187 (2010). ( , S. Sarin, I. Kim, C. S. Ha. http://dx.doi.org/10.1039/b925138c)
- 223. J. D. Dziezak. In Encyclopedia of Food Science and Nutrition, B. Caballero (Ed.), pp. 12–17, Academic Press, New York (2004).
- 224. Y. A. Colloid J. 74, 627 (2012). ( , V. E. Silant’ev, I. V. Postnova. http://dx.doi.org/10.1134/S1061933X12050092)
- 225. Y. A. Colloid J. 74, 636 (2012). ( , S. A. Sarin, V. E. Silant’ev, I. V. Postnova. http://dx.doi.org/10.1134/S1061933X12050109)
- 226. S. Adv. Mater. 10, 195 (1998). ( , M. Antonietti. http://dx.doi.org/10.1002/(SICI)1521-4095(199802)10:3<195::AID-ADMA195>3.0.CO;2-V)
- 227. K. J. C. Angew. Chem., Int. Ed. 42, 980 (2003). ( , A. Friggeri, S. Shinkai. http://dx.doi.org/10.1002/anie.200390284)
- 228. M. S. Wong, M. V. Knowles. In Nanoporous Materials. Science and Technology, G. Q. Lu, X. S. Zhao (Eds.), pp. 125–164, Imperial College Press, London (2004).
- 229. N. Husing, U. Schubert. In Functional Hybrid Materials, P. Gomez-Romero, C. Sanchez (Eds.), pp. 86–121, Wiley-VCH, Weinheim (2004).
- 230. A. C. Pierre. Introduction to Sol-Gel Processing, Kluwer, Boston (1998).
- 231. C. J. Mater. Chem. 9, 35 (1999). ( , F. Ribot, B. Lebeau. http://dx.doi.org/10.1039/a805538f)
- 232. Y. Chem. Rev. 107, 2821 (2007). ( , D. Y. Zhao. http://dx.doi.org/10.1021/cr068020s)
- 233. I. J. Am. Chem. Soc. 120, 8587 (1998). ( , A. Ballesteros. http://dx.doi.org/10.1021/ja9814568)
- 234. R. Biosensors Bioelectron. 22, 2387 (2007). ( , N. K. Chaudhury. http://dx.doi.org/10.1016/j.bios.2006.12.025)
- 235. H. Anal. Chim. Acta 583, 161 (2007). ( , C. Tran-Minh. http://dx.doi.org/10.1016/j.aca.2006.10.005)
- 236. M. Adv. Func. Mater. 16, 17 (2006). ( , E. Brunner. http://dx.doi.org/10.1002/adfm.200500616)
- 237. S. Mann. In Biomimetic Materials Chemistry, S. Mann (Ed.), pp. 1–40, VCH, New York (1996).
- 238. B. Arkles. In Kirk-Othmer Encyclopedia of Chemical Technology, pp. 69–81, John Wiley, New York (1997).
- 239. C. J. Brinker, G. W. Scherer. Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing, Academic Press, Boston (1990).
- 240. L. L. Hench. Sol-Gel Silica. Properties, Processing and Technology Transfer, Noyes Publications, Westwood, NJ (1998).
- 241. P. J. Colloid Interface Sci. 37, 557 (1971). ( , T. L. Whateley. http://dx.doi.org/10.1016/0021-9797(71)90333-X)
- 242. C. R. Langmuir 16, 9092 (2000). ( , E. M. Eyring. http://dx.doi.org/10.1021/la000255q)
- 243. J. L. Rickus, B. Dunn, J. I. Zink. In Optical Biosensors: Present and Future, F. S. Ligler, C. A. R. Taitt (Eds.), pp. 427–456, Elsevier, London (2002).
- 244. M. L. Chem. Mater. 14, 3619 (2002). ( , F. Del Monte, D. Levy. http://dx.doi.org/10.1021/cm025562r)
- 245. Y. A. J. Colloid Interface Sci. 268, 68 (2003). ( . http://dx.doi.org/10.1016/S0021-9797(03)00457-0)
- 246. R. C. Indian J. Chem. 5, 444 (1967). , R. P. Narain.
- 247. K. Ber. Bunsenges. Phys. Chem. 102, 1544 (1998). ( , M. Gradzielski, K. Mortensen, H. Hoffmann. http://dx.doi.org/10.1002/bbpc.19981021106)
- 248. Y. A. Langmuir 20, 3882 (2004). ( , T. Y. Karpenko. http://dx.doi.org/10.1021/la0356912)
- 249. Y. A. J. Biochem. Biophys. Methods 58, 25 (2004). ( , T. Y. Karpenko, I. Y. Bakunina, Y. Burtseva, T. N. Zvyagintseva. http://dx.doi.org/10.1016/S0165-022X(03)00108-8)
- 250. S. Chem. Lett. 36, 182 (2007). ( , Y. Ikkai, C. Rodriguez-Abreu, K. Aramaki, T. Ohsuna, K. Sakamoto. http://dx.doi.org/10.1246/cl.2007.182)
- 251. G. H. J. Phys. Chem. B 111, 10665 (2007). ( , L. M. Zhang. http://dx.doi.org/10.1021/jp070370a)
- 252. G. H. J. Phys. Chem. B 113, 2688 (2009). ( , L. M. Zhang. http://dx.doi.org/10.1021/jp810736v)
- 253. Y. A. J. Colloid Interface Sci. 285, 574 (2005). ( , A. Kojima, T. Imae. http://dx.doi.org/10.1016/j.jcis.2004.11.026)
- 254. Y. A. Colloids Surf., B 63, 7 (2008). ( , N. Y. Shipunova. http://dx.doi.org/10.1016/j.colsurfb.2007.10.022)
- 255. Y. J. Surf. Sci. Technol. 26, 239 (2010). .
- 256. Y. A. Colloid J. 67, 380 (2005). ( , A. V. Krekoten, V. G. Kuryavyi, I. N. Topchieva. http://dx.doi.org/10.1007/s10595-005-0108-2)
- 257. Y. A. Colloids, Surf. B 74, 172 (2009). ( , I. V. Postnova. http://dx.doi.org/10.1016/j.colsurfb.2009.07.023)
- 258. F. Biotechnol. Adv. 18, 549 (2000). ( , V. E. Santosa, J. A. Casas, F. Gomez. http://dx.doi.org/10.1016/S0734-9750(00)00050-1)
- 259. H. J. Nanoparticle Res. 13, 2117 (2011). ( , L. Zhang, J. Jo, C.-S. Ha, Y. Shchipunov, I. Kim. http://dx.doi.org/10.1007/s11051-010-9969-3)