CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2012, Vol. 84, No. 1, pp. 107-136

http://dx.doi.org/10.1351/PAC-REP-10-11-19

Published online 2011-12-12

PHYSICAL AND BIOPHYSICAL CHEMISTRY DIVISION

Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC Technical Report)

Jean Rouquerol1*, Gino Baron2, Renaud Denoyel1, Herbert Giesche3, Johan Groen4, Peter Klobes5, Pierre Levitz6, Alexander V. Neimark7, Sean Rigby8, Romas Skudas9, Kenneth Sing10, Matthias Thommes11 and Klaus Unger9

1 LCP, CNRS-University Aix-Marseille, Marseille, France
2 Vrije Universiteit Brussels, Brussels, Belgium
3 NYSCC at Alfred University, Alfred, NY, USA
4 Delft Solids Solutions B.V., Delft, The Netherlands
5 BAM Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
6 Ecole Polytechnique, Palaiseau, France
7 Rutgers University, Piscataway, NJ, USA
8 Bath University, Bath, UK
9 Johannes Gutenberg University, Mainz, Germany
10 Brunel University, Uxbridge, UK
11 Quantachrome Instruments, Boynton Beach, FL, USA

References

  • 1. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska. Pure Appl. Chem. 57, 603 (1985). (http://dx.doi.org/10.1351/pac198557040603)
  • 2. J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. R. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, K. K. Unger. Pure Appl. Chem. 66, 1739 (1994). (http://dx.doi.org/10.1351/pac199466081739)
  • 3. H. Giesche. In Handbook of Porous Solids, Vol. 1, F. Schueth, K. S. W. Sing, J. Weitkamp (Eds.), pp. 309–351, Wiley-VCH, Weinheim (2002).
  • 4. C. León y León. Adv. Colloid Interface Sci. 76-77, 341 (1998). (http://dx.doi.org/10.1016/S0001-8686(98)00052-9)
  • 5. ISO 15901-1:2005, “Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption – Part 2: Analysis of macropores by mercury porosimetry”, International Organization for Standardization (ISO), Geneva (2005).
  • 6. S. Lowell, J. Shields, M. A. Thomas, M. Thommes. Characterization of Porous Solids and Powders: Surface Area, Porosity and Density, Springer (2004).
  • 7. C. Felipe, S. Cordero, I. Kornhauser, G. Zgrablich, R. Lopez, F. Rojas. Part. Part. Syst. Charact. 23, 48 (2006). (http://dx.doi.org/10.1002/ppsc.200601013)
  • 8. S. P. Rigby, I. O. Evbuoumwan, M. J. Watt-Smith, K. Edler, R. S. Fletcher. Part. Part. Syst. Charact. 23, 82 (2006). (http://dx.doi.org/10.1002/ppsc.200601012)
  • 9a. F. Porcheron, P. A. Monson, M. Thommes. Langmuir 20, 6482 (2004). (http://dx.doi.org/10.1021/la049939e)
  • 9b. F. Porcheron, M. Thommes, R. Ahmad, P. A. Monson. Langmuir 23, 3372 (2007). (http://dx.doi.org/10.1021/la063080e)
  • 10. U.S. Department of Labor Occupational Safety and Health Administration (OSHA), Safety and Health Topics: Health Guidelines (2010). <http://www.osha.gov/SLTC/mercury/exposure_limits.html>.
  • 11. U.S. Department of Labor Occupational Safety and Health Administration (OSHA). Occupational Safety and Health Guideline for Mercury Vapor, September (1996). <http://www.osha.gov/SLTC/healthguidelines/mercuryvapour/recognition.html>.
  • 12. National Institute for Occupational Safety and Health (NIOSH). Publication No. 92-100 (1992). <http://www.cdc.gov/niosh/pdfs/92-100.pdf>.
  • 13. J. D. Blando, D. Singh. Controlling Metallic Mercury Exposure in the Workplace: A Guide for Employers, revised ed., New Jersey Department of Health and Senior Services, Trenton, NJ (2004). <http://www.state.nj.us/health/surv/documents/mercemp.pdf>.
  • 14. F. Gomez, R. Denoyel, J. Rouquerol. Langmuir 16, 3474 (2000). (http://dx.doi.org/10.1021/la9914256)
  • 15. B. Lefevre, A. Saugey, J.-L. Barrat, L. Bocquet, E. Charlaix, P. F. Gobin, G. Vigier. J. Chem. Phys. 120, 4927 (2004). (http://dx.doi.org/10.1063/1.1643728)
  • 16. A. Jena, K. Gupta. Fluid Particle Separation J. 4, 227 (2002).
  • 17. A. Y. Fadeev, V. Eroshenko. J. Colloid Interface Sci. 187, 275 (1997). (http://dx.doi.org/10.1006/jcis.1996.4495)
  • 18. V. Eroshenko, R.-C. Regis, M. Soulard, J. Patarin. J. Am. Chem. Soc. 123, 8129 (2001). (http://dx.doi.org/10.1021/ja011011a)
  • 19. B. Miller, I. Tyomkin. J. Colloid Interface Sci. 162, 163 (1994). (http://dx.doi.org/10.1006/jcis.1994.1021)
  • 20. Yu. M. Volfkovotch, V. S. Bagotzky, V. E. Sosenkin, E. I. Shkolnikov. Sov. Electrochem. 16, 1325 (1981).
  • 21. Y. M. Volfkovich, V. S. Bagotzky, V. E. Sosenkin, I. A. Blinov. Colloids Surf., A 187-188, 349 (2001). (http://dx.doi.org/10.1016/S0927-7757(01)00650-1)
  • 22. A. V. Neimark. Ads. Sci. Technol. 7, 210 (1990).
  • 23. A. V. Neimark. JETP Lett. 51, 535 (1990).
  • 24. A. V. Neimark, E. Robens, K. K. Unger, J. M. Volfkovich. Fractals 2, 45 (1994). (http://dx.doi.org/10.1142/S0218348X94000041)
  • 25. P. N. Aukett, C. A. Jessop. In Fundamentals of Adsorption, M. D. Le Van (Ed.), p. 59, Kluwer, Boston (1996).
  • 26. K. L. Muray, N. A. Seaton, M. A. Day. Langmuir 15, 6728 (1999). (http://dx.doi.org/10.1021/la990159t)
  • 27. R. Denoyel, M. Barrande, I. Beurroies. In Studies in Surface Science and Catalysis, P. Llewellyn et al. (Eds.), Elsevier, 160, 33 (2007).
  • 28. I. Gusev. J. Chromatogr., A 855, 273 (1999). (http://dx.doi.org/10.1016/S0021-9673(99)00697-4)
  • 29. P. C. Carman. Trans. Inst. Chem. Eng. 15, 150 (1937).
  • 30. S. Mauran. Transport Porous Media 43, 355 (2001). (http://dx.doi.org/10.1023/A:1010735118136)
  • 31. V. Kapur. Ind. Eng. Chem. Res. 35, 3179 (1996). (http://dx.doi.org/10.1021/ie960015z)
  • 32. F. C. Leinweber. Anal. Chem. 74, 2470 (2002). (http://dx.doi.org/10.1021/ac011163o)
  • 33. F. C. Leinweber. J. Chromatogr., A 1006, 207 (2003). (http://dx.doi.org/10.1016/S0021-9673(03)00391-1)
  • 34. F. C. Leinweber. Chem. Eng. Technol. 11, 1177 (2002).
  • 35. N. Vervoort. Anal. Chem. 75, 843 (2003). (http://dx.doi.org/10.1021/ac0262199)
  • 36. P. Gzil. Anal. Chem. 76, 6707 (2004). (http://dx.doi.org/10.1021/ac049202u)
  • 37. A. F. Miguel, A. Serrenho. J. Phys. D: Appl. Phys. 40, 6824 (2007). (http://dx.doi.org/10.1088/0022-3727/40/21/050)
  • 38. R. Skudas, B. A. Grimes, M. Thommes, K. K. Unger. J. Chromatogr., A 1216, 2635 (2009). (http://dx.doi.org/10.1016/j.chroma.2009.01.079)
  • 39. M. Brun, J. F. Quinson, C. Eyraud. Thermochim. Acta 21, 59 (1977). (http://dx.doi.org/10.1016/0040-6031(77)85122-8)
  • 40. M. Barrande, I. Beurroies, R. Denoyel, I. Tatarova, M. Gramblicka, M. Polakovic, M. Joehnck, M. Schulte. J. Chromatogr., A 1216, 6906 (2009). (http://dx.doi.org/10.1016/j.chroma.2009.07.075)
  • 41. J. H. Strange, M. Rahman, E. G. Smith. Phys. Rev. Lett. 71, 3589 (1993). (http://dx.doi.org/10.1103/PhysRevLett.71.3589)
  • 42. D. Vargas-Florencia, O. V. Petrov, I. Furo. J. Colloid Interface Sci. 305, 280 (2007). (http://dx.doi.org/10.1016/j.jcis.2006.09.054)
  • 43. M. P. Hollewand, L. F. Gladden. J. Catal. 144, 254 (1993). (http://dx.doi.org/10.1006/jcat.1993.1328)
  • 44a. Y. Wang, F. De Carlo, D. C. Mancini, I. McNulty, B. Tieman, J. Bresnahan, I. Foster, J. Insley, P. Lane, G. von Laszewski, C. Kesselman, M. H. Su, M. Thiebaux. Rev. Sci. Instrum. 72, 2062 (2001). (http://dx.doi.org/10.1063/1.1355270)
  • 44b. J. H. Raistrick. Mater. World 9, 11 (2001).
  • 45. J. H. Raistrick. Mater. World 9, 11 (2001).
  • 46. A. J. Koster, U. Ziese, A. J. Verklejj, A. H. Janssen, K. P. de Jong. J. Phys. Chem. B 104, 9368 (2000). (http://dx.doi.org/10.1021/jp0015628)
  • 47. L. Holzer, F. Indutnyi, P. H. Gasser, B. Munch, M. Wegmann. J. Microsc. 216, 84 (2004). (http://dx.doi.org/10.1111/j.0022-2720.2004.01397.x)
  • 48. J. T. Fredrich. Phys. Chem. Earth A 24, 551 (1999). (http://dx.doi.org/10.1016/S1464-1895(99)00079-4)
  • 49. P. T. Callaghan. Principles of Nuclear Magnetic Resonance Microscopy, Clarendon Press, Oxford, UK (1991).
  • 50. L. Ruffino, R. Mann, R. Oldman, E. H. Stitt, E. Boller, P. Cloetens, M. di Michiel, J. Merino. Can. J. Chem. Eng. 83, 132 (2005). (http://dx.doi.org/10.1002/cjce.5450830122)
  • 51. S. P. Rigby, M. J. Watt-Smith, P. Chigada, J. A. Chudek, R. S. Fletcher, J. Wood, S. Bakalis, T. Miri. Chem. Eng. Sci. 61, 7579 (2006).
  • 52. S. P. Rigby, R. S. Fletcher. Part. Part. Syst. Charact. 21, 138 (2004). (http://dx.doi.org/10.1002/ppsc.200400925)
  • 53. S. Torquato. Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer, New York (2005).
  • 54. P. Levitz. In Handbook of Porous Solids, Vol. 1, F. Schueth, K. S. W. Sing, J. Weitkamp (Eds.), Chap. 2, Wiley-VCH, Weinheim (2002).
  • 55. F. A. Dullien. Porous Media: Fluid Transport and Pore Structure, Academic Press, New York (1976).
  • 56. M. Sahimi. Flow and Transport in Porous Media and Fractured Rock, VCH (1995).
  • 57. J. Serra. Image Analysis and Mathematical Morphology, Academic Press, London (1982).
  • 58. S. Ryde, S. Anderson, K. Larson, Z. Blum, T. Landh, S. Lidin, B. W. Ninham. The Language of Shape: The Role of Curvature in Condensed Matter, Elsevier (1997).
  • 59. C. H. Arns, M. A. Knackstedt, K. R. Mecke. Colloids Surf., A 241, 351 (2004). (http://dx.doi.org/10.1016/j.colsurfa.2004.04.034)
  • 60. B. Lu, S. Torquato. J. Chem. Phys. 93, 3452 (1990). (http://dx.doi.org/10.1063/1.458827)
  • 61. R. Hilfer. Phys. Rev. B 44, 60 (1991). (http://dx.doi.org/10.1103/PhysRevB.44.60)
  • 62. B. Biswal, C. Manwart, R. Hilfer. Physica A 255, 221 (1998). (http://dx.doi.org/10.1016/S0378-4371(98)00111-3)
  • 63. P. Levitz, D. Tchoubar. J. Phys. I 2, 771 (1992). (http://dx.doi.org/10.1051/jp1:1992174)
  • 64. P. Levitz. In Characterisation of Porous Solid IV, B. McEnaney et al. (Eds.), p. 213, Royal Society of Chemistry (1997).
  • 65. M. Coleman. J. Appl. Prob. 2, 169 (1965).
  • 66. H. Reiss. J. Phys. Chem. 96, 4736 (1992). (http://dx.doi.org/10.1021/j100191a005)
  • 67. M. Doi. J. Phys. Soc. Jpn. 40, 567 (1976). (http://dx.doi.org/10.1143/JPSJ.40.567)
  • 68. A. Guinier, G. Fournet. Small Angle Scattering of X-rays, Chap. 1, John Wiley (1955).
  • 69. L. K. Barrett, C. S. Yust. Metallography 3, 1 (1970). (http://dx.doi.org/10.1016/0026-0800(70)90002-9)
  • 70. C. Lin, M. H. Cohen. J. Appl. Phys. 59, 328 (1994).
  • 71. L. Pothuaud, P. Porion, E. Lespessailles, C. L. Benhamou, P. Levitz. J. Microsc. 199, 149 (2000). (http://dx.doi.org/10.1046/j.1365-2818.2000.00725.x)
  • 72. M. Han, S. Youssef, E. Rosenberg, M. Fleury, P. Levitz. Phys. Rev. E 79, 031127 (2009). (http://dx.doi.org/10.1103/PhysRevE.79.031127)
  • 73. L. Pothuaud, B. Rietbergen, L. Mosekilde, O. Beuf, P. Levitz, C. Benhamou, S. Majumdar. J. Biomechan. 35, 1091 (2002). (http://dx.doi.org/10.1016/S0021-9290(02)00060-X)
  • 74. D. Stoyan, W. Kendall, J. Mecke. Stochastic Geometry and its Applications, 2nd ed., John Wiley (1995).
  • 75. M. Y. Joshi. Ph.D. thesis, University of Kansas, USA (1974).
  • 76. P. M. Adler, C. G. Jacquin, J. A. Quiblier. Int. J. Multiphase Flow 16, 691 (1990). (http://dx.doi.org/10.1016/0301-9322(90)90025-E)
  • 77. P. Levitz. Adv. Colloid Interface Sci. 76–77, 71 (1998). (http://dx.doi.org/10.1016/S0001-8686(98)00042-6)
  • 78. R. D. Hazlett. Math. Geol. 29, 801 (1997). (http://dx.doi.org/10.1007/BF02768903)
  • 79. M. Rintoul, S. J. Torquato. Colloid Interface Sci. 186, 467 (1997). (http://dx.doi.org/10.1006/jcis.1996.4675)
  • 80. C. L. T. Yeong, S. Torquato. Phys. Rev. E 57, 495 (1998). (http://dx.doi.org/10.1103/PhysRevE.57.495)
  • 81. C. L. T. Yeong, S. Torquato. Phys. Rev. E 58, 224 (1998). (http://dx.doi.org/10.1103/PhysRevE.58.224)
  • 82. B. B. Mandelbrot. The Fractal Geometry of Nature, W.H. Freeman, San Francisco (1982).
  • 83. J. F. Gouyet. Physics and Fractal Structures, Springer (1996).
  • 84. ISO/IEC 17025:2005, General Requirements for the Competence of Testing and Calibration Laboratories, International Organization for Standardization (ISO), Geneva (2005).
  • 85. H. Emons, A. Fajgelj, A. M. H. van der Veen, R. Watters. Accred. Qual. Assur. 10, 576 (2006). (http://dx.doi.org/10.1007/s00769-006-0089-9)
  • 86. ISO/IEC Guide 99, International Vocabulary of Metrology - Basic and General Concepts and Associated Terms (VIM), 3rd ed. (2007). JCGM 200:2008 at <http://www.bipm.org/en/publica-tions/guides/vim>.
  • 87. ISO Guide 30:1992, Terms and Definitions Used in Connection with Reference Materials, International Organization for Standardization (ISO), Geneva (1992).
  • 88. ISO Guide 31:2000, Contents of Certificates of Reference Materials, International Organization for Standardization (ISO), Geneva (2000).
  • 89. ISO Guide 32:1997, Calibration of Chemical Analysis and Use of Certified Reference Materials, International Organization for Standardization (ISO), Geneva (1997).
  • 90. ISO Guide 33:2000, Uses of Certified Reference Materials, International Organization for Standardization (ISO), Geneva (2000).
  • 91. ISO Guide 34:2000, General Requirements for the Competence of Reference Material Producers as Amended by Technical Corrigendum 1 of 15/11/2003, International Organization for Standardization (ISO), Geneva (2003).
  • 92. ISO Guide 35:2006, Certification of Reference Materials: General and Statistical Principles, International Organization for Standardization (ISO), Geneva (2006).
  • 93. ISO/IEC Guide 98:1995, Guide to the Expression of Uncertainty in Measurement (GUM), International Organization for Standardization (ISO), Geneva (1995).