Pure Appl. Chem., 2011, Vol. 83, No. 9, pp. 1763-1779
http://dx.doi.org/10.1351/PAC-CON-10-11-22
Published online 2011-06-12
Desired properties of new phthalocyanines for photodynamic therapy
Abstract:
The manuscript focuses on the properties of phthalocyanines (Pcs) that are required for them to be employed as photosensitizers in applications such as photodynamic therapy (PDT). High triplet-state quantum yields and lifetimes as well as high singlet-oxygen quantum yields are required for a good photosensitizer. In addition, absorption of the photosensitizer in the red region of the electromagnetic spectrum is also required, and this can be achieved by ring expansion, substitution with electron-donating ligands, and change of the central metal among others. Quantum dots (QDs) are efficient accumulators of light energy, and they can transfer this energy to molecules that possess a very efficient ability to generate singlet oxygen through a process called Förster resonance energy transfer (FRET). Thus, there is a decrease in the fluorescence quantum yield of the QDs when in the vicinity of Pcs. Triplet quantum yields of the Pcs increase in the presence of QDs.