Pure Appl. Chem., 2011, Vol. 83, No. 8, pp. 1619-1636
http://dx.doi.org/10.1351/PAC-REP-10-01-01
Published online 2011-07-08
PHYSICAL AND BIOPHYSICAL CHEMISTRY DIVISION
Defining the hydrogen bond: An account (IUPAC Technical Report)
References
- 1. The Penguin Dictionary of Science, Penguin, London (1971).
- 2. L. Pauling. The Nature of the Chemical Bond, Cornell University Press, Ithaca, NY (1960). The first edition was published in 1939.
- 3. G. C. Pimentel, A. L. McClellan. The Hydrogen Bond, W. H. Freeman, San Francisco (1960).
- 4. D. Hadzi (Ed.). Hydrogen Bonding, Pergamon, London (1959).
- 5. W. C. Hamilton, J. A. Ibers. Hydrogen Bonding in Solids, W. A. Benjamin, New York (1968).
- 6. S. N. Vinogradov, R. H. Linnell. Hydrogen Bonding, Van Nostrand-Reinhold, New York (1971).
- 7. M. D. Joeston, L. J. Schaad. Hydrogen Bonding, Marcel Dekker, New York (1974).
- 8. P. Schuster, G. Zundel, C. Sanfordy. The Hydrogen Bond: Recent Developments in Theory and Experiments, Vols. I–III, North Holland, Amsterdam (1976).
- 9. P. Schuster. Hydrogen Bonds, Springer Verlag, Berlin (1984).
- 10. G. A. Jeffrey, W. Saenger. Hydrogen Bonding in Biological Structures, Springer Verlag, Berlin (1991).
- 11. S. Scheiner. Hydrogen Bonding: A Theoretical Perspective, Oxford University Press, Oxford (1997).
- 12. G. A. Jeffrey. An Introduction to Hydrogen Bonding, Oxford University Press, Oxford (1997).
- 13. G. R. Desiraju, T. Steiner. The Weak Hydrogen Bond, Oxford University Press, Oxford (1999).
- 14. S. J. Grabowski (Ed.). Hydrogen Bonding: New Insights, Springer, Dordrecht (2006).
- 15. P. Gilli, G. Gilli. The Nature of the Hydrogen Bond, Oxford University Press, Oxford (2009).
- 16. W. M. J. Am. Chem. Soc. 42, 1419 (1920). ( , W. H. Rodebush. http://dx.doi.org/10.1021/ja01452a015)
- 17. A. Leibigs Ann. Chem. 322, 261 (1902). ( . http://dx.doi.org/10.1002/jlac.19023220302)
- 18. P. Ann. Chem. 398, 137 (1913). .
- 19. T. S. J. Chem. Soc. 101, 1635 (1912). , T. F. Winmill.
- 20a. M. L. Phys. Rev. 18, 333 (1921); .
- 20b. See refs. [2–15] for more historic details and also M. L. Angew. Chem., Int. Ed. 10, 147 (1971) for a personal account from Huggins. .
- 21. A. S. N. Appl. Spectrosc. Rev. 2, 69 (1968). ( , C. N. R. Rao. http://dx.doi.org/10.1080/05704926808050887)
- 22. P. A. Chem. Rev. 72, 283 (1972). ( , L. C. Allen. http://dx.doi.org/10.1021/cr60277a004)
- 23. J. Chem. Soc. Rev. 9, 91 (1980). ( . http://dx.doi.org/10.1039/cs9800900091)
- 24. R. J. Am. Chem. Soc. 104, 5063 (1982). ( , O. Kennard. http://dx.doi.org/10.1021/ja00383a012)
- 25. M. C. Acc. Chem. Res. 23, 120 (1990). ( . http://dx.doi.org/10.1021/ar00172a005)
- 26. M. A. Chem. Soc. Rev. 24, 45 (1995). ( , D. J. Nesbitt. http://dx.doi.org/10.1039/cs9952400045)
- 27. I. Chem. Soc. Rev. 27, 163 (1998). ( , I. Roza, J. Ekguero. http://dx.doi.org/10.1039/a827163z)
- 28. Y. A. Inorg. Chem. 37, 6317 (1998). ( , L. Brammer, W. T. Klooster, R. M. Bullock. http://dx.doi.org/10.1021/ic9809660)
- 29. T. H. J. Phys. Chem. A 104, 9062 (2000). ( Jr. http://dx.doi.org/10.1021/jp001507z)
- 30. P. Chem. Rev. 100, 4253 (2000). ( , Z. Havlas. http://dx.doi.org/10.1021/cr990050q)
- 31. C. E. J. Mol. Struct. (Theochem) 500, 375 (2000). ( , J. M. Lisy. http://dx.doi.org/10.1016/S0166-1280(00)00388-2)
- 32. G. J. Mol. Struct. 552, 1 (2000). ( , P. Gilli. http://dx.doi.org/10.1016/S0022-2860(00)00454-3)
- 33. S. J. J. Phys. Chem. A 105, 10739 (2001). ( . http://dx.doi.org/10.1021/jp011819h)
- 34. B. J. Am. Chem. Soc. 124, 1506 (2001). ( . http://dx.doi.org/10.1021/ja0118542)
- 35. J. J. J. Mol. Struct. 615, 219 (2002). ( . http://dx.doi.org/10.1016/S0022-2860(02)00220-X)
- 36. J. Macromolecules 37, 1728 (2004). ( , S. J. Ding, M. Radosz, Y. Q. Shen. http://dx.doi.org/10.1021/ma035322c)
- 37. C. L. Annu. Rev. Phys. Chem. 48, 511 (1997). ( , J. B. Nielson. http://dx.doi.org/10.1146/annurev.physchem.48.1.511)
- 38. A. V. Spectrochim. Acta, Part A 55, 1585 (1999). .
- 39. Y. J. Org. Chem. 72, 4936 (2007). ( , Z. Y. Yang, Y. P. Yi, J. F. Xiang, C. F. Chen, L. J. Wan, Z. G. Shuai. http://dx.doi.org/10.1021/jo070525a)
- 40. E. J. Med. Chem. 47, 5114 (2004). ( , S. Sciabola, G. Cruciani. http://dx.doi.org/10.1021/jm0498349)
- 41. R. McWeeny. Coulson’s Valence, 3rd ed., Oxford University Press, Oxford (1979).
- 42. J. Israelachvili. Intermolecular and Surface Forces, 2nd ed., Academic Press, New York (1991).
- 43. A. D. Buckingham. In Intermolecular Interactions from Diatomics to Biopolymers, B. Pullman (Ed.), John Wiley, New York (1978).
- 44. J. J. Chem. Phys. 52, 4858 (1970). ( , J. A. Pople. http://dx.doi.org/10.1063/1.1673723)
- 45. P. J. Am. Chem. Soc. 116, 909 (1994). ( , V. Bertolasi, V. Ferrati, G. Gilli. http://dx.doi.org/10.1021/ja00082a011)
- 46. F. Weinhold, C. R. Landis. Valency and Bonding, Cambridge University Press, Cambridge (2005).
- 47. R. A. Chem. Phys. Lett. 433, 165 (2006). ( . http://dx.doi.org/10.1016/j.cplett.2006.11.041)
- 48. A. J. J. Am. Chem. Soc. 120, 8293 (1998). ( , S. Grzesiek. http://dx.doi.org/10.1021/ja981513x)
- 49. E. D. Phys. Rev. Lett. 82, 600 (1999). ( , A. Shukla, P. M. Platzman, D. R. Harman, B. Barbiellini, C. A. Tulk. http://dx.doi.org/10.1103/PhysRevLett.82.600)
- 50. H. Ratajczak, W. J. Orville-Thomas (Eds). Molecular Interactions, p. 15, John Wiley, New York (1980).
- 51. W. Angew. Chem., Int. Ed. 44, 2356 (2005). ( , E. Cornicchi, M. M. Teixidor, N. Saendig, F. Pirani, D. Cappelletti. http://dx.doi.org/10.1002/anie.200462704)
- 52. L. F. J. Phys. Chem. A 113, 15223 (2009). ( , L. Belpassi, D. Cappelletti, F. Pirani, F. Tarantelli. http://dx.doi.org/10.1021/jp905584p)
- 53. H. J. Am. Chem. Soc. 99, 1316 (1977). ( , K. Morokuma. http://dx.doi.org/10.1021/ja00447a007)
- 54. J. P. J. Am. Chem. Soc. 102, 7211 (1980). ( , F. Weinhold. http://dx.doi.org/10.1021/ja00544a007)
- 55. E. D. J. Chem. Phys. 100, 2900 (1994). ( , A. Streitwieser. http://dx.doi.org/10.1063/1.466432)
- 56. B. Chem. Rev. 94, 1887 (1994). ( , R. Moszy?ki, K. Szalewicz. http://dx.doi.org/10.1021/cr00031a008)
- 57. A. D. Can. J. Chem. 63, 2018 (1985). ( , P. W. Fowler. http://dx.doi.org/10.1139/v85-334)
- 58. M. A. J. Chem. Phys. 85, 6587 (1986). ( . http://dx.doi.org/10.1063/1.451441)
- 59. C. E. J. Am. Chem. Soc. 111, 6168 (1989). ( . http://dx.doi.org/10.1021/ja00198a029)
- 60. C. E. THEOCHEM 500, 375 (2000). ( , J. M. Lisy. http://dx.doi.org/10.1016/S0166-1280(00)00388-2)
- 61. C. M. Hansen. Hansen Solubility Parameters: A User Handbook, CRC Press, Boca Raton (2007).
- 62. C. M. Eur. Polym. J. 44, 2741 (2008). ( . http://dx.doi.org/10.1016/j.eurpolymj.2008.07.005)
- 63. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: (2006–) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. (http://dx.doi.org/10.1351/goldbook)
- 64. W. D. J. Am. Chem. Soc. 57, 600 (1935). ( . http://dx.doi.org/10.1021/ja01307a002)
- 65. O. R. J. Am. Chem. Soc. 58, 2287 (1936). ( , U. Liddel, S. B. Henricks. http://dx.doi.org/10.1021/ja01302a059)
- 66. N. S. Quart. J. Indian. Inst. Sci. 6, 1 (1943). , S. K. K. Jakkar.
- 67. E. S. J. Phys. Chem. A 109, 7309 (2005). ( , A. Karpfen, F. Remacle. http://dx.doi.org/10.1021/jp052460q)
- 68. R. H. Acc. Chem. Res. 29, 348 (1996). , P. E. M. Siegbahn, O. Eisenstein, A. L. Reingold, T. Koetzle.
- 69. G. N. Chem. Phys. Lett. 283, 193 (2002). , T. Ibata, N. Mikami.
- 70. H. J. Chem. Phys. 119, 5094 (2003). ( , M. Pecul, J. Sadlej. http://dx.doi.org/10.1063/1.1597633)
- 71. A. C. J. Chem. Phys. 74, 4944 (1981). ( , P. D. Soper, W. H. Flygare. http://dx.doi.org/10.1063/1.441747)
- 72. J. M. J. Chem. Phys. 124, 084301 (2006). ( , S. Rudic, R. E. Miller. http://dx.doi.org/10.1063/1.2168450)
- 73. I. Ber. Bunsen-Ges. Phys. Chem. 102, 429 (1998). , J. Rozas, J. Elguero.
- 74. S. J. Chem. Phys. Lett. 432, 33 (2006). ( , W. A. Sokalski, J. Leszczynski. http://dx.doi.org/10.1016/j.cplett.2006.10.069)
- 75. B. Chem. Phys. Lett. 467, 37 (2008). ( , E. Arunan. http://dx.doi.org/10.1016/j.cplett.2008.11.009)
- 76. F. Pure Appl. Chem. 79, 1023 (2007). ( , A. Coussan, M. J. Gutmann. http://dx.doi.org/10.1351/pac200779061023)
- 77. A. C. Chem. Soc. Rev. 22, 153 (1993). ( . http://dx.doi.org/10.1039/cs9932200153)
- 78. M. J. Calhorda. In Hydrogen Bonding: New Insights, S. J. Grabowski (Ed.), pp. 263–292, Springer, Dordrecht (2006).
- 79. L. Acta Crystallogr., Sect. B 51, 632 (1995). ( , D. Zhao, F. T. Ladipo, J. Braddock-Wilking. http://dx.doi.org/10.1107/S0108768195003673)
- 80. P. Acc. Chem. Res. 42, 33 (2009). ( , L. Pretto, V. Bertolasi, G. Gilli. http://dx.doi.org/10.1021/ar800001k)
- 81. J. Emsley. The Elements, 3rd ed., Oxford University Press, Oxford (1998).
- 82. C. M. J. Chem. Phys. 93, 5387 (1990). ( , D. J. Nesbitt. http://dx.doi.org/10.1063/1.459663)
- 83. D. J. J. Chem. Phys. 91, 722 (1989). ( , C. M. Lovejoy, T. G. Lindeman, S. V. O’Neil, D. C. Clary. http://dx.doi.org/10.1063/1.457178)
- 84. S. J. J. Chem. Phys. 60, 3208 (1974). ( , S. E. Novick, W. Klemperer. http://dx.doi.org/10.1063/1.1681508)
- 85. E. J. Chem. Phys. Lett. 70, 420 (1980). ( , M. R. Keenan, L. W. Buxton, T. J. Balle, P. D. Soper, A. C. Legon, W. H. Flygare. http://dx.doi.org/10.1016/0009-2614(80)85364-4)
- 86. F. A. J. Chem. Phys. 75, 2041 (1981). ( , T. A. Dixon, C. H. Joyner, W. Klemperer. http://dx.doi.org/10.1063/1.442322)
- 87. C. M. J. Chem. Phys. 94, 208 (1991). ( , D. J. Nesbitt. http://dx.doi.org/10.1063/1.460379)
- 88. S. A. C. J. Chem. Phys. 118, 4066 (2003). ( . http://dx.doi.org/10.1063/1.1540628)
- 89. S. Y. Chem. Phys. Lett. 383, 606 (2004). ( , C. H. Mou, H. P. Wu. http://dx.doi.org/10.1016/j.cplett.2003.11.076)
- 90. J. Chem. Phys. Lett. 459, 44 (2008). ( , J. Sadlej. http://dx.doi.org/10.1016/j.cplett.2008.05.019)
- 91. S. E. J. Chem. Phys. 65, 5115 (1976). ( , K. C. Janda, W. Klemperer. http://dx.doi.org/10.1063/1.433051)
- 92. A. C. Angew. Chem., Int. Ed. 38, 2686 (1999). ( . http://dx.doi.org/10.1002/(SICI)1521-3773(19990917)38:18<2686::AID-ANIE2686>3.0.CO;2-6)
- 93. P. Angew. Chem., Int. Ed. 47, 6114 (2008). ( , F. Meyer, T. Pilati, G. Resnati, G. Terraneo. http://dx.doi.org/10.1002/anie.200800128)
- 94. P. J. Phys. Chem. A 110, 10296 (2006). ( , S. J. Grabowski, J. Leszczynski. http://dx.doi.org/10.1021/jp062289y)
- 95. L. D. J. Mol. Struct. (Theochem) 639, 151 (2003). ( , A. F. Bonamy, T. L. Meek, B. G. Patrick. http://dx.doi.org/10.1016/j.theochem.2003.08.004)
- 96. X. J. Am. Chem. Soc. 124, 9639 (2002). ( , L. Liu, H. B. Schlegel. http://dx.doi.org/10.1021/ja020213j)
- 97. F. H. Acta Crystallogr., Sect. B 58, 380 (2002); also look at <http://www.ccdc.cam.ac.uk/>. ( . http://dx.doi.org/10.1107/S0108768102003890)
- 98. J. Gu, P. E. Bourne (Eds.). The Worldwide Protein Data Bank in Structural Bioinformatics, 2nd ed. pp. 293–303, John Wiley, Hoboken (2009).
- 99. S. C. Acta Crystallogr. 15, 758 (1962) and private communication (2006). ( . http://dx.doi.org/10.1107/S0365110X6200198X)
- 100. B. New J. Chem. 29, 371 (2005). ( , A. G. Samuelson, K. V. Jovan Jose, S. R. Gadre, E. Arunan. http://dx.doi.org/10.1039/b411815d)
- 101. B. Phys. Chem. Chem. Phys. 8, 5276 (2006). ( , P. K. Mandal, E. Arunan. http://dx.doi.org/10.1039/b611033a)
- 102. R. A. J. Am. Chem. Soc. 124, 13931 (2002). ( . http://dx.doi.org/10.1021/ja0206947)
- 103. R. A. Chem. Phys. Lett. 425, 128 (2006). ( . http://dx.doi.org/10.1016/j.cplett.2006.04.109)
- 104. A. J. Phys. Chem. 68, 441 (1964). ( . http://dx.doi.org/10.1021/j100785a001)
- 105. D. R. Lide (Ed.). Handbook of Physics and Chemistry, 90th ed. (Internet version), Sect. 9, CRC Press/Taylor and Francis, Boca Raton (2010).
- 106. N. J. Chem. Phys. 124, 174308 (2006). ( , L. Gonzalez. http://dx.doi.org/10.1063/1.2191042)
- 107. A. C. Chem. Phys. Lett. 135, 303 (1987). ( , D. J. Millen, H. M. North. http://dx.doi.org/10.1016/0009-2614(87)85161-8)
- 108. W. J. Chem. Phys. 108, 10096 (1998). ( , M. Quack, M. A. Suhm. http://dx.doi.org/10.1063/1.476470)
- 109. G. R. Chem. Commun. 891 (1998). , S. Steiner.
- 110. B. S. J. Phys. Chem. 79, 615 (1975). ( , E. Steinback, G. C. Pimentel. http://dx.doi.org/10.1021/j100573a014)
- 111a. G. Scoles (Ed.). Atomic and Molecular Beam Methods, Vol. 1, Oxford University Press, New York (1988).
- 111a. G. Scoles (Ed.). Atomic and Molecular Beam Methods, Vol. 2, Oxford University Press, New York (1992).
- 112. P. D. J. Chem. Phys. 75, 2126 (1981). ( , A. C. Legon, W. H. Flygare. http://dx.doi.org/10.1063/1.442316)
- 113. W. G. J. Am. Chem. Soc. 103, 7670 (1981). ( , E. J. Campbell, G. Hendersen, W. H. Flygare. http://dx.doi.org/10.1021/ja00415a054)
- 114. E. J. Chem. Phys. 117, 9766 (2002). ( , T. Emilsson, H. S. Gutowsky, G. T. Fraser, G. de Oliveira, C. E. Dykstra. http://dx.doi.org/10.1063/1.1518999)
- 115. M. Chem. Phys. Lett. 393, 22 (2004). ( , P. K. Mandal, D. J. Ramdass, E. Arunan. http://dx.doi.org/10.1016/j.cplett.2004.06.015)
- 116. J. S. Phys. Rev. Lett. 85, 1024 (2000). ( , R. J. Nelmes, S. Klotz, J. M. Benson, G. Hamel. http://dx.doi.org/10.1103/PhysRevLett.85.1024)
- 117. M. Phys. Chem. Chem. Phys. 11, 8974 (2009). ( , E. Arunan. http://dx.doi.org/10.1039/b907708a)
- 118. R. J. Phys. Chem. A 110, 3349 (2006). ( , V. Subramanian, N. Sathyamurthy. http://dx.doi.org/10.1021/jp060571z)
- 119. G. E. J. Am. Chem. Soc. 58, 548 (1936). ( , O. R. Wulf, S. B. Hendricks, U. Liddel. http://dx.doi.org/10.1021/ja01295a002)
- 120a. R. M. J. Chem. Phys. 5, 605 (1937). ( , S. H. Bauer. http://dx.doi.org/10.1063/1.1750085)
- 120b. R. M. J. Chem. Phys. 5, 839 (1937). ( , S. H. Bauer. http://dx.doi.org/10.1063/1.1749952)
- 121a. L. P. J. Am. Chem. Soc. 74, 2492 (1952). ( . http://dx.doi.org/10.1021/ja01130a013)
- 121b. L. P. J. Am. Chem. Soc. 76, 4323 (1954). ( . http://dx.doi.org/10.1021/ja01646a023)
- 121c. L. P. J. Am. Chem. Soc. 80, 5950 (1958). ( . http://dx.doi.org/10.1021/ja01555a016)
- 122. D. L. J. Am. Chem. Soc. 127, 17096 (2005). ( , P. Jorgensen, H. G. Kjaergaard. http://dx.doi.org/10.1021/ja055827d)
- 123. D. L. J. Phys. Chem. A 110, 9597 (2006). ( , H. G. Kjaergaard. http://dx.doi.org/10.1021/jp061547o)
- 124. C. Top. Curr. Chem. 120, 41 (1984). .
- 125. T. Chem. Phys. 346, 167 (2008). ( , D. Luckhaus, M. A. Suhm. http://dx.doi.org/10.1016/j.chemphys.2008.01.028)
- 126. P. Chem. Phys. Lett. 299, 180 (1999). ( , V. Špirko, Z. Havlas, K. Buchhold, B. Reimann, H.-D. Barth, B. Brutschy. http://dx.doi.org/10.1016/S0009-2614(98)01264-0)
- 127. B. J. J. Am. Chem. Soc. 123, 12290 (2001). ( , W. A. Herrebout, R. Szostak, D. N. Shchepkin, Z. Havlas, P. Hobza. http://dx.doi.org/10.1021/ja010915t)
- 128. I. V. J. Am. Chem. Soc. 125, 5973 (2003). ( , M. Manoharan, S. Peabody, F. Weinhold. http://dx.doi.org/10.1021/ja034656e)
- 129. S. J. Phys. Chem. A 106, 1784 (2002). ( , T. Kar. http://dx.doi.org/10.1021/jp013702z)
- 130. J. J. Am. Chem. Soc. 129, 4620 (2007). ( , E. D. Jemmis. http://dx.doi.org/10.1021/ja067545z)
- 131. A. Karpfen, E. S. Kryachko. J. Phys. Chem. A 111 (2007).
- 132. S. K. High Pressure Res. 27, 313 (2007). ( . http://dx.doi.org/10.1080/08957950701463194)
- 133. M. J. Chem. Phys. 112, 7930 (2000). ( , J. Leszczynski, J. Sadlej. http://dx.doi.org/10.1063/1.481394)
- 134. A. C. Chem. Soc. Rev. 19, 197 (1990). ( . http://dx.doi.org/10.1039/cs9901900197)
- 135. E. Appl. Spectrosc. Rev. 39, 131 (2004). ( , S. Dev, P. K. Mandal. http://dx.doi.org/10.1081/ASR-120030906)
- 136. J. C. Phys. Chem. Chem. Phys. 12, 14128 (2010). ( , J. L. Alonso, I. Pe?a, V. Vaquero. http://dx.doi.org/10.1039/c0cp00665c)
- 137. K. Science 271, 929 (1996). ( , J. D. Cruzan, R. J. Saykally. http://dx.doi.org/10.1126/science.271.5251.929)
- 138. A. Chem. Phys. 282, 111 (2002). ( , S. Melandri, W. Caminati, P. G. Favero. http://dx.doi.org/10.1016/S0301-0104(02)00499-8)
- 139. K. J. Phys. Chem. A 101, 8995 (1997). ( , M. G. Brown, R. J. Saykally. http://dx.doi.org/10.1021/jp9707807)
- 140. F. N. J. Chem. Phys. 114, 3994 (2001). ( , M. G. Brown, P. B. Petersen, R. J. Saykally, M. Geleijns, A. van der Avoird. http://dx.doi.org/10.1063/1.1337051)
- 141. S. T. Acc. Chem. Res. 42, 1239 (2009). ( , K. Ramasesha, A. Tokmakoff. http://dx.doi.org/10.1021/ar900088g)
- 142. H. J. Phys. Chem. A 113, 5633 (2009). ( , P. R. Shirhatti, S. J. Wategaonkar. http://dx.doi.org/10.1021/jp9009355)
- 143. S. J. Phys. Chem. A 113, 1760 (2009). ( , G. N. Patwari. http://dx.doi.org/10.1021/jp809121n)
- 144. V. A. J. Phys. Chem. A 113, 8067 (2009). ( , C. W. Muller, T. S. Zwier. http://dx.doi.org/10.1021/jp904233y)
- 145. J. Chem. Soc. Rev. 39, 1478 (2010). ( , J. Cz. Dabrowski, J. E. Rode. http://dx.doi.org/10.1039/b915178h)
- 146. J. P. Angew. Chem., Int. Ed. 43, 2622 (2004). ( , A. F. Vilesov. http://dx.doi.org/10.1002/anie.200300611)
- 147. Z. J. Chem. Phys. 131, 054301 (2009). ( , M. A. Suhm. http://dx.doi.org/10.1063/1.3191728)
- 148. C. J. Science 301, 1698 (2003). ( , J. D. Eaves, J. J. Loparo, A. Tokmakoff, P. L. Geissler. http://dx.doi.org/10.1126/science.1087251)
- 149. R. J. Chem. Phys. 126, 204107 (2007). ( , J. R. Schmidt, J. L. Skinner. http://dx.doi.org/10.1063/1.2742385)
- 150. E. T. J. Chem. Rev. 104, 1887 (2004). ( , T. Elsaesser. http://dx.doi.org/10.1021/cr020694p)
- 151. R. Angew. Chem., Int. Ed. 47, 8033 (2008). ( , J. P. Renault, M. Candelaresi, D. J. Palmer, S. Le Caer, R. Righini, S. Pommeret. http://dx.doi.org/10.1002/anie.200802630)
- 152. V. P. J. Struct. Chem. 50, 78 (2009). ( , Y. I. Naberukhin. http://dx.doi.org/10.1007/s10947-009-0010-6)
- 153. P. J. Am. Chem. Soc. 99, 4875 (1977). ( . http://dx.doi.org/10.1021/ja00457a002)
- 154. S. Theor. Chim. Acta 57, 71 (1980). ( . http://dx.doi.org/10.1007/BF00547998)
- 155. K. A. J. Chem. Phys. 102, 2032 (1995). ( , T. H. Dunning. http://dx.doi.org/10.1063/1.468725)
- 156. S. Annu. Rev. Phys. Chem. 45, 23 (1994). ( . http://dx.doi.org/10.1146/annurev.pc.45.100194.000323)
- 157. J. A. J. Phys. Chem. A 110, 12512 (2006). ( , S. Leutwyler. http://dx.doi.org/10.1021/jp064730q)
- 158. T. P. J. Phys. Chem. A 109, 191 (2005). ( , M. E. Derrick, C. D. Sherrill. http://dx.doi.org/10.1021/jp046778e)
- 159. J. Labanowski, J. Andzelm (Eds). Density Functional Methods in Chemistry, Springer, New York (1991).
- 160. Y. Acc. Chem. Res. 41, 157 (2008). ( , D. G. Truhlar. http://dx.doi.org/10.1021/ar700111a)
- 161. G. J. Phys. Chem. 95, 10531 (1991). ( , J. Andzelm. http://dx.doi.org/10.1021/j100179a003)
- 162. Z. J. Chem. Phys. 101, 9793 (1994). ( , Y. Bouteiller. http://dx.doi.org/10.1063/1.467944)
- 163. S. J. Chem. Phys. 114, 3949 (2001). ( , H. P. Luthi. http://dx.doi.org/10.1063/1.1344891)
- 164. Y. J. Phys. Chem. B 109, 19046 (2005). ( , O. Tishchenko, D. G. Truhlar. http://dx.doi.org/10.1021/jp0534434)
- 165. E. M. J. Chem. Phys. 117, 1621 (2002). ( , J. R Otero. http://dx.doi.org/10.1063/1.1485722)
- 166. J. S. J. Phys. Chem. B 113, 4726 (2009). ( , P. C. Aeberhard, I.-C. Lin, U. Rothlisberger. http://dx.doi.org/10.1021/jp810323m)
- 167. L. J. Chem. Theory Comput. 5, 86 (2009). ( , H. Ke, G. Fu, X. Xu, Y. Yan. http://dx.doi.org/10.1021/ct800237n)
- 168. S. Chem. Phys. Lett. 229, 175 (1994). ( , P. Pulay. http://dx.doi.org/10.1016/0009-2614(94)01027-7)
- 169. J. Phys. Chem. Chem. Phys. 8, 5287 (2006). ( , S. Grimme. http://dx.doi.org/10.1039/b612585a)
- 170. P. J. Comput. Chem. 28, 555 (2007). ( , J. Černý, P. Hobza, D. R. Salahub. http://dx.doi.org/10.1002/jcc.20570)
- 171. S. F. Mol. Phys. 19, 553 (1970). ( , F. Bernardi. http://dx.doi.org/10.1080/00268977000101561)
- 172. M. M. J. Phys. Chem. A 113, 7927 (2009). ( , S. R. Gadre. http://dx.doi.org/10.1021/jp9031207)
- 173. K. J. Phys. Chem. A 114, 9529 (2010). ( , J. Thar, S. Zahn, B. Kirchner. http://dx.doi.org/10.1021/jp103470e)
- 174. K. Int. J. Quantum Chem. 10, 325 (1976). ( , K. Morokuma. http://dx.doi.org/10.1002/qua.560100211)
- 175. R. J. Chem. Phys. 103, 8058 (1995). ( , P. E. S. Wormer, B. Jeziorski, A. van der Avoird. http://dx.doi.org/10.1063/1.470171)
- 176. K. Szalewicz, B. Jeziorski. In: Molecular Interactions. From Van der Waals to Strongly Bound Complexes, S. Scheiner (Ed.), p. 3, John Wiley: New York (1997).
- 177. A. E. J. Chem. Phys. 84, 5687 (1986). ( , F. Weinhold, L. A. Curtiss, D. J. Pochatko. http://dx.doi.org/10.1063/1.449928)
- 178. K. J. Am. Chem. Soc. 112, 8251 (1990). ( , J. F. Hilton, P. Pulay. http://dx.doi.org/10.1021/ja00179a005)
- 179. J. E. D. J. Phys. Chem. A 107, 107 (2003). , S. A. Perera, R. J. Bartlett, M. Yañez, O. Mó, J. Elguero, I. Alkorta.
- 180. A. E. J. Chem. Phys. 83, 735 (1985). ( , L. A. Curtiss, F. Weinhold. http://dx.doi.org/10.1063/1.449486)
- 181. R. F. W. Bader. Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford (1990).
- 182. P. Coppens. X-ray Charge Densities and Chemical Bonding, Oxford University Press, Oxford (1997).
- 183. U. J. Phys. Chem. 99, 9747 (1995). ( , P. L. A. Popelier. http://dx.doi.org/10.1021/j100024a016)
- 184. P. J. Mol. Struct. 694, 33 (2004). ( , V. Nirmala. http://dx.doi.org/10.1016/j.molstruc.2004.01.030)
- 185. J. J. Chem. Phys. Lett. 318, 345 (2000). ( , F. Mota. http://dx.doi.org/10.1016/S0009-2614(00)00016-6)
- 186. P. J. Phys. Chem. A 109, 659 (2005). ( , T. N. Guru Row. http://dx.doi.org/10.1021/jp046388s)
- 187. L. J. J. Phys. Chem. A 110, 7952 (2006). ( , C. Evans, M. Tegel. http://dx.doi.org/10.1021/jp061846d)
- 188. A. Chem.—Eur. J. 13, 9632 (2007). , E. Fransisco, M. A. Blanco, C. Gatti.
- 189. R. F. W. J. Phys. Chem. A 113, 10391 (2009). ( . http://dx.doi.org/10.1021/jp906341r)
- 190. R. A. Chem. Phys. Lett. 429, 633 (2006). For example, this has been observed for the planar and quasi-planar conformational transition states of ethane-1,2-diol, and ethanolamine; unpublished observations, R. A. Klein (2009). ( . http://dx.doi.org/10.1016/j.cplett.2006.08.094)
- 191. E. R. J. Am. Chem. Soc. 132, 6498 (2010). ( , S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A. J. Cohen, W. Yang. http://dx.doi.org/10.1021/ja100936w)
- 192. E. Pure Appl. Chem. 83, 1637 (2011). , G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, D. J. Nesbitt.