Pure Appl. Chem., 2010, Vol. 82, No. 8, pp. 1569-1574
http://dx.doi.org/10.1351/PAC-CON-10-02-09
Published online 2010-05-18
Mechanostereochemistry
References
- 1. H. Monatsh. Chem. 84, 250 (1953). ( , I. Martin, H. Mark. http://dx.doi.org/10.1007/BF00899187)
- 2. G. M. Science 295, 2418 (2002). ( , B. A. Grzybowski. http://dx.doi.org/10.1126/science.1070821)
- 3a. D. H. Coord. Chem. Rev. 100, 119 (1990). ( , N. A. Stephenson. http://dx.doi.org/10.1016/0010-8545(90)85007-F)
- 3b. S. Acc. Chem. Res. 26, 469 (1993). ( , H. L. Anderson, J. K. M. Sanders. http://dx.doi.org/10.1021/ar00033a003)
- 3c. F. Diederich, P. J. Stang (Eds.). Templated Organic Synthesis, Wiley-VCH, Weinheim (1999).
- 3d. J. F. Proc. Natl. Acad. Sci. USA 99, 4797 (2002). ( , H.-R. Tseng. http://dx.doi.org/10.1073/pnas.052708999)
- 3e. M. J. Top. Stereochem. 23, 125 (2003). ( , J. C. Chambron, M. C. Jiménez, J.-P. Sauvage. http://dx.doi.org/10.1002/0471224499.ch2)
- 3f. D. H. Top. Curr. Chem. 249, 1 (2005). .
- 3g. K. E. Pure Appl. Chem. 80, 485 (2008). ( , J. F. Stoddart. http://dx.doi.org/10.1351/pac200880030485)
- 4a. J. F. Tetrahedron 64, 8231 (2008). ( , H. M. Colquhoun. http://dx.doi.org/10.1016/j.tet.2008.06.035)
- 4b. J. F. Chem. Soc. Rev. 38, 1802 (2009). ( . http://dx.doi.org/10.1039/b819333a)
- 5a. G. Schill. Catenanes, Rotaxanes and Knots, Academic Press, New York (1971).
- 5b. J.-P. Sauvage, C. O. Dietrich-Buchecker (Eds.). Molecular Catenanes, Rotaxanes and Knots, Wiley-VCH, Weinheim (1999).
- 6. In his Tetrahedron Prize Lecture given at the 236th American Chemical Society National Meeting in Philadelphia on 17 August 2008, one (J. F. S.) of the authors proposed the use of the term “mechanostereochemistry” to encompass all aspects of the “mechanical bond” in chemistry. The term mechanostereochemistry has been employed recently in another context. See: I. Nat. Chem. 1, 264 (2009). ( , U. Friedrichs. http://dx.doi.org/10.1038/nchem.266)
- 7. J.-M Lehn. Supramolecular Chemistry: Concepts and Perspectives, VCH, Weinheim (1996).
- 8. S. J. Angew. Chem., Int. Ed. 41, 898 (2002). ( , S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F. Stoddart. http://dx.doi.org/10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E)
- 9. J. F. Nat. Chem. 1, 14 (2009). ( . http://dx.doi.org/10.1038/nchem.142)
- 10. D. J. Chem. Soc. Rev. 38, 1257 (2009). ( , J. L. Mendoza-Cortés, M. O’Keeffe, O. M. Yaghi. http://dx.doi.org/10.1039/b817735j)
- 11. V. Angew. Chem., Int. Ed. 39, 3348 (2000). ( , A. Credi, F. M. Raymo, J. F. Stoddart. http://dx.doi.org/10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X)
- 12a. F. R. J. Am. Chem. Soc. 82, 1256 (1960). ( , D. S. Noyce, C. H. Sederholm, A. J. Berlin. http://dx.doi.org/10.1021/ja01490a061)
- 12b. R. K. Proc. Chem. Soc. 418 (1961). , N. Sheppard.
- 12c. W. B. J. Am. Chem. Soc. 83, 1671 (1961). ( , J. A. Dixon. http://dx.doi.org/10.1021/ja01468a029)
- 12d. F. R. J. Am. Chem. Soc. 84, 386 (1962). ( , D. S. Noyce, C. H. Sederholm, A. J. Berlin. http://dx.doi.org/10.1021/ja00862a015)
- 13. P. R. Angew. Chem., Int. Ed. Engl. 28, 1396 (1989). ( , T. T. Goodnow, A. E. Kaifer, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, C. Vicent, D. J. Williams. http://dx.doi.org/10.1002/anie.198913961)
- 14. P.-L. J. Am. Chem. Soc. 113, 5131 (1991). ( , N. Spencer, J. F. Stoddart. http://dx.doi.org/10.1021/ja00013a096)
- 15. S. A. Collect. Czech. Chem. Commun. 70, 1493 (2005). ( , J. F. Stoddart. http://dx.doi.org/10.1135/cccc20051493)
- 16. I. O. Annu. Rep. NMR Spectrosc. 4, 71 (1971). ( . http://dx.doi.org/10.1016/S0066-4103(08)60345-2)
- 17a. J. K. N. Can. J. Chem. 47, 3213 (1969). , J. F. Stoddart, W. A. Szarek.
- 17b. S. Chem.—Eur. J. 6, 3366 (2000). ( , T. Nakagawa, H. J. Lindner, F. W. Lichtenthaler. http://dx.doi.org/10.1002/1521-3765(20000915)6:18<3366::AID-CHEM3366>3.0.CO;2-9)
- 18a. E. L. Angew. Chem., Int. Ed. Engl. 4, 761 (1965). ( . http://dx.doi.org/10.1002/anie.196507611)
- 18b. N. C. Angew. Chem., Int. Ed. Engl. 4, 774 (1965). ( , H. Feltkamp. http://dx.doi.org/10.1002/anie.196507741)
- 18c. F. R. J. Am. Chem. Soc. 91, 3223 (1969). ( , C. H. Bushweller. http://dx.doi.org/10.1021/ja01040a022)
- 19. G. Angew. Chem., Int. Ed. Engl. 20, 187 (1981). ( , K. Rissler, H. Fritz, W. Vetter. http://dx.doi.org/10.1002/anie.198101871)
- 20. M. Angew. Chem., Int. Ed. 37, 333 (1998). ( , P. R. Ashton, V. Balzani, A. Credi, C. Hamers, G. Mattersteig, M. Montalti, A. N. Shipway, N. Spencer, J. F. Stoddart, M. S. Tolley, M. Venturi, A. J. P. White. http://dx.doi.org/10.1002/(SICI)1521-3773(19980216)37:3<333::AID-ANIE333>3.0.CO;2-P)
- 21a. H.-R. Angew. Chem., Int. Ed. 42, 1491 (2003). ( , S. A. Vignon, J. F. Stoddart. http://dx.doi.org/10.1002/anie.200250453)
- 21b. J. O. Eur. J. Org. Chem. 196 (2005). ( , S. Nygaard, S. A. Vignon, J. F. Stoddart. http://dx.doi.org/10.1002/ejoc.200400530)
- 22a. C. P. Science 289, 1172 (2000). ( , G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, J. R. Heath. http://dx.doi.org/10.1126/science.289.5482.1172)
- 22b. C. P. J. Am. Chem. Soc. 123, 12632 (2001). ( , J. O. Jeppesen, Y. Luo, J. Perkins, E. W. Wong, J. R. Heath, J. F. Stoddart. http://dx.doi.org/10.1021/ja0114456)
- 23. M. A. Org. Biomol. Chem. 7, 4391 (2009). ( , A. B. Braunschweig, T. Ikeda, L. Fang, A. Trabolsi, A. M. Slawin, S. I. Khan, J. F. Stoddart. http://dx.doi.org/10.1039/b911874h)
- 24. Previously, we had advocated (M. C. T. Angew. Chem., Int. Ed. 36, 2068 (1997)) the use of the term “co-conformation” to designate the different three-dimensional spatial arrangements of the components of mechanically interlocked molecules. ( , P. T. Glink, S. Menzer, J. F. Stoddart, A. J. P. White, D. J. Williams. http://dx.doi.org/10.1002/anie.199720681)
- 25. While conformational diastereoisomerism is now commonplace throughout the reaches of organic chemistry (for an example at the top end of the scale of energy barriers to interconversion, consider the trianthranilides—see: A. J. Chem. Soc., Perkin Trans. 1 1649 (1982)), configurational diastereoisomerism dominates organic chemistry across a wide spectrum of different compound types from those where it is displayed around carbon–carbon double bonds in the cis and trans sense (e.g., the TTF unit in the structural formula in Fig. 4a, bottom) to the more conventional situations that exist as soon as two or more chiral elements coexist in the same molecule. Even epimers abound. ( , W. D. Ollis, J. A. Price, J. S. Stephanatou, J. F. Stoddart. http://dx.doi.org/10.1039/p19820001649)
- 26. J. O. Chem.—Eur. J. 9, 2982 (2003). ( , K. A. Nielsen, J. Perkins, S. A. Vignon, A. DiFabio, R. Ballardini, M. T. Gandolfi, M. Venturi, V. Balzani, J. Becher, J. F. Stoddart. http://dx.doi.org/10.1002/chem.200204589)
- 27a. Y. ChemPhysChem. 3, 519 (2002). ( , C. P. Collier, J. O. Jeppesen, K. A. Nielsen, E. DeIonno, G. Ho, J. Perkins, H.-R. Tseng, T. Yamamoto, J. F. Stoddart, J. R. Heath. http://dx.doi.org/10.1002/1439-7641(20020617)3:6<519::AID-CPHC519>3.0.CO;2-2)
- 27b. J. E. Nature 129, 626 (2007). , J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halprin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H.-R. Tseng, J. F. Stoddart, J. R. Heath.
- 28a. R. J. Am. Chem. Soc. 131, 4233 (2009). ( , L. Fang, A. Coskun, M. A. Olson, P. J. Wesson, J. F. Stoddart, B. A. Grzybowski. http://dx.doi.org/10.1021/ja9001585)
- 28b. R. Nat. Chem. 1, 733 (2009). ( , M. A. Olson, P. J. Wesson, L. Fang, A. Coskun, A. Trabolsi, J. F. Stoddart, B. A. Grzybowski. http://dx.doi.org/10.1038/nchem.432)
- 28c. M. A. Nano Lett. 9, 3185 (2009). ( , A. Coskun, R. Klajn, L. Fang, S. K. Dey, K. P. Browne, B. A. Grzybowski, J. F. Stoddart. http://dx.doi.org/10.1021/nl901385c)
- 29a. T. Proc. Natl. Acad. Sci. USA 102, 10029 (2005). ( , H.-R. Tseng, P. C. Celestre, A. H. Flood, Y. Liu, J. I. Zink, J. F. Stoddart. http://dx.doi.org/10.1073/pnas.0504109102)
- 29b. S. Adv. Funct. Mater. 17, 2261 (2007). ( , E. Johansson, J. F. Stoddart, J. I. Zink. http://dx.doi.org/10.1002/adfm.200601217)
- 29c. K. K. Nanoscale 1, 16 (2009). ( , M. E. Belowich, M. Liong, M. W. Ambrogio, Y. A. Lau, H. A. Khatib, J. I. Zink, N. M. Khashab, J. F. Stoddart. http://dx.doi.org/10.1039/b9nr00162j)