CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2010, Vol. 82, No. 5, pp. 1161-1187

http://dx.doi.org/10.1351/PAC-REP-09-08-16

Published online 2010-04-20

Electrochemical nucleic acid-based biosensors: Concepts, terms, and methodology (IUPAC Technical Report)

Jan Labuda1*, Ana Maria Oliveira Brett2, Gennady Evtugyn3, Miroslav Fojta4*, Marco Mascini5, Mehmet Ozsoz6, Ilaria Palchetti5, Emil Paleček4 and Joseph Wang7

1 Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
2 Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-533 Coimbra, Portugal
3 Department of Analytical Chemistry, A.M. Butlerov Institute of Chemistry, Kazan State University, Kremlevskaya 18, 420008 Kazan, Russia
4 Institute of Biophysics, Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
5 Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
6 Faculty of Pharmacy, Ege University, Bornova-Izmir, Turkey 35100
7 Department of Nanoengineering, University of San Diego, La Jolla, CA 92093, USA

References

  • 1. D. R. Thevenot, K. Toth, R. A. Durst, G. S. Wilson. Pure Appl. Chem. 71, 2333 (1999). (http://dx.doi.org/10.1351/pac199971122333)
  • 2. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006–) created by M. Nič, J. Jirát, B. Košata; updates compiled by A. Jenkins.
  • 3. E. Paleček, F. Jelen. In Electrochemistry of Nucleic Acids and Proteins. Towards Electrochemical Sensors for Genomics and Proteomics, E. Pale?ek, F. Scheller, J. Wang, (Eds.), pp. 74–174, Elsevier, Amsterdam (2005).
  • 4. E. Katz, I. Willner. In Technology and Performance, V. Mirsky (Ed.), pp. 67–106, Springler-Verlag, Berlin (2004).
  • 5. E. Paleček, M. Fojta. Talanta 74, 276 (2007). (http://dx.doi.org/10.1016/j.talanta.2007.08.020)
  • 6. J. Wang, E. Paleček, P. Nielsen, G. Rivas, X. Cai, H. Shiraishi, H. Dontha, D. Luo, P. A. M. Farias. J. Am. Chem. Soc. 118, 7667 (1996). (http://dx.doi.org/10.1021/ja9608050)
  • 7. E. Paleček. In Methods in Enzymology, J. N. Abelson, M. I. Simon (Eds.), pp. 139–155, Academic Press, New York (1992).
  • 8. T. Hermann, D. J. Patel. Science 287, 820 (2000). (http://dx.doi.org/10.1126/science.287.5454.820)
  • 9. S. Klussman (Ed.). The Aptamer Handbook, Wiley-VCH, Weinheim (2006).
  • 10. S. Tombelli, M. Minunni, M. Mascini. Biomol. Eng. 24, 191 (2007). (http://dx.doi.org/10.1016/j.bioeng.2007.03.003)
  • 11. A. D. Ellington, J. W. Szostak. Nature 346, 818 (1990). (http://dx.doi.org/10.1038/346818a0)
  • 12. C. Tuerk, L. Gold. Science 249, 505 (1990). (http://dx.doi.org/10.1126/science.2200121)
  • 13. R. Fadrna, K. Kucharikova-Cahova, L. Havran, B. Yosypchuk, M. Fojta. Electroanalysis 17, 452 (2005). (http://dx.doi.org/10.1002/elan.200403181)
  • 14. B. Yosypchuk, M. Fojta, L. Havran, M. Heyrovsky, E. Paleček. Electroanalysis 18, 186 (2006). (http://dx.doi.org/10.1002/elan.200503392)
  • 15. E. E. Ferapontova, E. Dominguez. Electroanalysis 15, 629 (2003). (http://dx.doi.org/10.1002/elan.200390079)
  • 16. M. Fojta. In Electrochemistry of Nucleic Acids and Proteins. Towards Electrochemical Sensors for Genomics and Proteomics, E. Pale?ek, F. Scheller, J. Wang (Eds.), pp. 386–431, Elsevier, Amsterdam (2005).
  • 17. J. Labuda, M. Fojta, F. Jelen, E. Paleček. In Encyclopedia of Sensors, C. A. Grimes, E. C. Dickey, M. V. Pishko (Eds.), pp. 201–228, American Scientific Publishers, Stevenson Ranch, CA (2006).
  • 18. N. Popovich, H. Thorp. Interface 11, 30 (2002).
  • 19. J. Galandova, G. Ziyatdinova, J. Labuda. Anal. Sci. 24, 711 (2008). (http://dx.doi.org/10.2116/analsci.24.711)
  • 20. M. Steichen, Y. Decrem, E. Godfroid, C. Buess-Herman. Biosens. Bioelectron. 22, 2237 (2007). (http://dx.doi.org/10.1016/j.bios.2006.10.041)
  • 21. E. Paleček, M. Fojta. In Bioelectronics, I. Wilner, E. Katz (Eds.), pp. 127–192, Wiley-VCH, Weinheim (2005).
  • 22. P. Kara, K. Kerman, D. Ozkan, B. Meric, A. Erdem, Z. Ozkan, M. Ozsoz. Electrochem. Commun. 4, 705 (2002). (http://dx.doi.org/10.1016/S1388-2481(02)00428-9)
  • 23. M. Hocek, M. Fojta. Org. Biomol. Chem. 6, 2233 (2008). (http://dx.doi.org/10.1039/b803664k)
  • 24. M. Fojta, P. Kostecka, M. Trefulka, L. Havran, E. Paleček. Anal. Chem. 79, 1022 (2007). (http://dx.doi.org/10.1021/ac0616299)
  • 25. G. U. Flechsig, T. Reske. Anal. Chem. 79, 2125 (2007). (http://dx.doi.org/10.1021/ac062075c)
  • 26. M. Trefulka, V. Ostatna, L. Havran, M. Fojta, E. Paleček. Electroanalysis 19, 1281 (2007). (http://dx.doi.org/10.1002/elan.200703848)
  • 27. E. Katz, B. Willner, I. Willner. In Electrochemistry of Nucleic Acids and Proteins. Towards Electrochemical Sensors for Genomics and Proteomics, E. Paleček, F. Scheller, J. Wang (Eds.), pp. 195–246, Elsevier, Amsterdam (2005).
  • 28. J. Wang. In Electrochemistry of Nucleic Acids and Proteins. Towards Electrochemical Sensors for Genomics and Proteomics, E. Paleček, F. Scheller, J. Wang (Eds.), pp. 369–384, Elsevier, Amsterdam (2005).
  • 29. C. Fan, K. W. Plaxco, A. J. Heeger. Proc. Natl. Acad. Sci. USA 100, 9134 (2003). (http://dx.doi.org/10.1073/pnas.1633515100)
  • 30. I. Willner, E. Katz, B. Willner. Electroanalytical Methods for Biological Materials, A. Brajter-Toth, J. Q. Chambers (Eds.), pp. 43–107, Marcel Dekker, New York (2002).
  • 31. A. A. Gorodetsky, M. C. Buzzeo, J. K. Barton. Bioconjugate Chem. 19, 2285 (2008). (http://dx.doi.org/10.1021/bc8003149)
  • 32. D. W. Pang, H. D. Abruna. Anal. Chem. 70, 3162 (1998). (http://dx.doi.org/10.1021/ac980211a)
  • 33. M. Gebala, L. Stoica, S. Neugebauer, W. Schuhmann. Electroanalysis 21, 325 (2009). (http://dx.doi.org/10.1002/elan.200804388)
  • 34. E. Paleček, V. Ostatna. Electroanalysis 19, 2383 (2007). (http://dx.doi.org/10.1002/elan.200704033)
  • 35. A. M. O. Brett, V. C. Diculescu, A. M. Chiorcea-Paquim, S. H. P. Serrano. In Electrochemical Sensors Analysis, S. Alegret, A. Merkoci (Eds.), pp. 413–438, Elsevier, Amsterdam (2007).
  • 36. J. F. Rusling. In Electrochemistry of Nucleic Acids and Proteins. Towards Electrochemical Sensors for Genomics and Proteomics, E. Paleček, F. Scheller, J. Wang (Eds.), pp. 433–449, Elsevier, Amsterdam (2005).
  • 37. G. Zauner, Y. Wang, M. Lavesa-Curto, A. MacDonald, A. G. Mayes, R. P. Bowater, J. N. Butt. Analyst 130, 345 (2005). (http://dx.doi.org/10.1039/b413556c)
  • 38. M. B. Gonzalez-Garcia, M. T. Fernandez-Abedul, A. Costa-Garcia. In Electrochemical Sensors Analysis, S. Alegret, A. Merkoci (Eds.), pp. 603–641, Elsevier, Amsterdam (2007).
  • 39. M. J. Tarlov, A. B. Steel. In Biomolecular Films. Design, Function, and Applications, J. F. Rusling (Ed.), pp. 545–608, Marcel Dekker, New York (2003).
  • 40. A. Sassolas, B. D. Leca-Bouvier, L. J. Blum. Chem. Rev. 108, 109 (2008). (http://dx.doi.org/10.1021/cr0684467)
  • 41. R. Hintsche, B. Elsholz, G. Piechotta, R. Woerl, C. G. J. Schabmueller, J. Albers, V. Dharuman, E. Nebling, A. Hanisch, L. Blohm, F. Hofmann, B. Holzapfl, A. Frey, C. Paulus, M. Schienle, R. Thewes. In Electrochemistry of Nucleic Acids and Proteins. Towards Electrochemical Sensors for Genomics and Proteomics, E. Paleček, F. Scheller, J. Wang (Eds.), pp. 247–275, Elsevier, Amsterdam (2005).
  • 42. A. M. O. Brett. In Electrochemistry at the Nanoscale, P. Schmuki, S. Virtanen (Eds.), pp. 407–433, Springer, New York (2009).
  • 43. A. Ferancova, J. Labuda. In Nanostructured Materials in Electrochemistry, A. Eftekhari, (Ed.), pp. 409–434, Wiley-VCH, Weinheim (2008).
  • 44. K. Kalantar-zadeh, B. Fry. Nanotechnology: Enabled Sensors, Springer, New York (2008).
  • 45. K. Balasubramanian, M. Burghard. Anal. Bioanal. Chem. 385, 452 (2006). (http://dx.doi.org/10.1007/s00216-006-0314-8)
  • 46. J. Wang, X. H. Cai, B. M. Tian, H. Shiraishi. Analyst 121, 965 (1996). (http://dx.doi.org/10.1039/an9962100965)
  • 47. C. G. Hu, S. S. Hu. Electrochim. Acta 49, 405 (2004). (http://dx.doi.org/10.1016/j.electacta.2003.08.022)
  • 48. M. L. Pedano, G. A. Rivas. Biosens. Bioelectron. 18, 269 (2003). (http://dx.doi.org/10.1016/S0956-5663(02)00176-8)
  • 49. A. M. O. Brett, A. M. Chiorcea. Electrochem. Commun. 5, 178 (2003). (http://dx.doi.org/10.1016/S1388-2481(03)00014-6)
  • 50. J. Galandova, J. Labuda. Chem. Pap. 63, 1 (2009). (http://dx.doi.org/10.2478/s11696-008-0083-2)
  • 51. P. Mailley, A. Roget, T. Livache. In Electrochemistry of Nucleic Acids and Proteins. Towards Electrochemical Sensors for Genomics and Proteomics, E. Pale?ek, F. Scheller, J. Wang (Eds.), pp. 297–329, Elsevier, Amsterdam (2005).
  • 52. S. Q. Liu, J. J. Xu, H. Y. Chen. Bioelectrochemistry 57, 149 (2002). (http://dx.doi.org/10.1016/S1567-5394(02)00114-7)
  • 53. H. Chen, C. K. Heng, P. D. Puiu, X. D. Zhou, A. C. Lee, T. M. Lim, S. N. Tan. Anal. Chim. Acta 554, 52 (2005). (http://dx.doi.org/10.1016/j.aca.2005.08.086)
  • 54. J. J. Gooding, F. Mearns, W. R. Yang, J. Q. Liu. Electroanalysis 15, 81 (2003). (http://dx.doi.org/10.1002/elan.200390017)
  • 55. J. Watterson, P. A. E. Piunno, U. J. Krull. Anal. Chim. Acta 469, 115 (2002). (http://dx.doi.org/10.1016/S0003-2670(02)00125-3)
  • 56. B. J. Taft, M. O’Keefe, J. T. Fourkas, S. O. Kelley. Anal. Chim. Acta 496, 81 (2003). (http://dx.doi.org/10.1016/j.aca.2002.10.002)
  • 57. F. Y. Ma, R. B. Lennox. Langmuir 16, 6188 (2000). (http://dx.doi.org/10.1021/la9913046)
  • 58. K. M. Millan, A. J. Spurmanis, S. R. Mikkelsen. Electroanalysis 4, 929 (1992). (http://dx.doi.org/10.1002/elan.1140041003)
  • 59. D. I. Rozkiewicz, J. Gierlich, G. A. Burley, K. Gutsmiedl, T. Carell, B. J. Ravoo, D. N. Reinhoudt. Chembiochem 8, 1997 (2007). (http://dx.doi.org/10.1002/cbic.200700402)