Pure Appl. Chem., 2010, Vol. 82, No. 5, pp. 1065-1097
http://dx.doi.org/10.1351/PAC-REP-09-10-24
Published online 2010-04-20
Empirical and theoretical models of equilibrium and non-equilibrium transition temperatures of supplemented phase diagrams in aqueous systems (IUPAC Technical Report)
References
- 1. H. Carbohydr. Polym. 6, 213 (1986). ( , L. Slade. http://dx.doi.org/10.1016/0144-8617(86)90021-4)
- 2. H. Levine, L. Slade. Water Science Reviews, Vol. 3, pp. 79–185, Cambridge University Press, Cambridge (1987).
- 3. H. Levine, L. Slade. Water and Food Quality, pp. 71–134, Elsevier Applied Science, London (1988).
- 4. H. J. Chem. Soc., Faraday Trans. 1 84, 2619 (1988). ( , L. Slade. http://dx.doi.org/10.1039/f19888402619)
- 5. L. Pure Appl. Chem. 60, 1841 (1988). ( , H. Levine. http://dx.doi.org/10.1351/pac198860121841)
- 6. Y. Int. J. Food Sci. Technol. 26, 553 (1991). , M. Karel.
- 7. Y. Carbohydr. Res. 238, 39 (1993). ( . http://dx.doi.org/10.1016/0008-6215(93)87004-C)
- 8. D. S. Reid. Water Properties of Food, Pharmaceutical, and Biological Materials, pp. 59–76, CRC, Taylor & Francis (2006).
- 9. R. A. Thermochim. Acta 380, 109 (2001). ( , Y. Roos. http://dx.doi.org/10.1016/S0040-6031(01)00664-5)
- 10. K. S. Pitzer. Thermodynamics, 3rd ed., McGraw-Hill Series in Advanced Chemistry, Chap. 14, pp. 251, McGraw-Hill, New York (1995).
- 11. W. F. J. Am. Chem. Soc. 58, 1144 (1936). ( , J. W. Stout. http://dx.doi.org/10.1021/ja01298a023)
- 12. C. A. J. Phys. Chem. 86, 998 (1982). ( , M. Oguni, W. J. Sichina. http://dx.doi.org/10.1021/j100395a032)
- 13. R. J. J. Phys. Chem. 91, 3354 (1987). ( . http://dx.doi.org/10.1021/j100296a049)
- 14. R. J. Geochim. Cosmochim. Acta 54, 575 (1990). ( , N. Møller, J. H. Weare. http://dx.doi.org/10.1016/0016-7037(90)90354-N)
- 15. J. M. Prausnitz, R. N. Lichtenhaler, E. G. de Azevedo. Molecular Thermodynamics and Fluid-Phase Equilibria, 2nd ed., Prentice Hall, New Jersey (1986).
- 16. S. A. Carbohydr. Res. 337, 1563 (2002). ( , S. A. Cooke, E. A. Macedo. http://dx.doi.org/10.1016/S0008-6215(02)00213-6)
- 17. M. Fluid Phase Equilib. 96, 33 (1994). ( , C. G. Dussap, C. Achard, J. B. Gros. http://dx.doi.org/10.1016/0378-3812(94)80086-3)
- 18. H. R. Pure Appl. Chem. 67, 579 (1995). ( . http://dx.doi.org/10.1351/pac199567040579)
- 19. D. S. AIChE. J. 21, 116 (1975). ( , J. M. Prausnitz. http://dx.doi.org/10.1002/aic.690210115)
- 20. M. Le Maguer. Physical Chemistry of Foods (IFT Basic Symposium Series 7), pp. 1–45, Marcel Dekker, New York (1992).
- 21. B. L. Ind. Eng. Chem. Res. 26, 2274 (1987). ( , P. Rasmussen, A. Fredenslund. http://dx.doi.org/10.1021/ie00071a018)
- 22. A. Bondi. Physical Properties of Molecular Crystals, Liquids, and Glasses, John Wiley, New York (1968).
- 23. A. M. Fluid Phase Equilib. 123, 71 (1996). ( , E. A. Macedo. http://dx.doi.org/10.1016/0378-3812(96)03046-4)
- 24. J. J. B. Fluid Phase Equilib. 173, 121 (2000). ( , J. A. Coutinho, E. A. Macedo. http://dx.doi.org/10.1016/S0378-3812(00)00388-5)
- 25. A. AIChE J. 21, 1086 (1975). ( , R. L. Jones, J. M. Prausnitz. http://dx.doi.org/10.1002/aic.690210607)
- 26. N. Bull. Soc. Chim. Fr. 127, 391 (1990). , C. Laguérie.
- 27. Y. Fluid Phase Equilib. 73, 175 (1992). ( , N. Gabas, M. L. Delia, T. Bounahmidi. http://dx.doi.org/10.1016/0378-3812(92)85047-C)
- 28. C. Ind. Aliment. Agric. 109, 93 (1992). , J. B. Gros, C. G. Dussap.
- 29. M. Fluid Phase Equilib. 105, 1 (1995). ( , C. G. Dussap, J. B. Gros. http://dx.doi.org/10.1016/0378-3812(94)02604-Y)
- 30. A. M. Fluid Phase Equilib. 139, 47 (1997). ( , E. A. Macedo. http://dx.doi.org/10.1016/S0378-3812(97)00196-9)
- 31. H. Fluid Phase Equilib. 130, 117 (1997). ( , H. Noritomi, D. Hoshino, K. Nagahama. http://dx.doi.org/10.1016/S0378-3812(96)03209-8)
- 32. N. Fluid Phase Equilib. 173, 39 (2000). ( , D. Tassios. http://dx.doi.org/10.1016/S0378-3812(00)00387-3)
- 33. O. Ind. Eng. Chem. Res. 42, 6212 (2003). ( , E. A. Brignole, E. A. Macedo. http://dx.doi.org/10.1021/ie030246n)
- 34. L. Food Chem. 96, 387 (2006). ( , C. G. Dussap, J. B. Gros. http://dx.doi.org/10.1016/j.foodchem.2005.02.053)
- 35. W. G. J. Chem. Phys. 13, 276 (1945). ( , J. E. Mayer. http://dx.doi.org/10.1063/1.1724036)
- 36. K. S. Pitzer. “Ion interaction approach: Theory and data correlation”, in Activity Coefficients in Electrolyte Solutions, R. M. Pytkowicz (Ed.), CRC Press, Boca Raton (1989).
- 37. R. A. J. Chem. Thermodyn. 2, 745 (1970). ( , R. H. Stokes, K. N. Marsh. http://dx.doi.org/10.1016/0021-9614(70)90050-9)
- 38. T. M. J. Chem. Soc., Faraday Trans. 1 78, 225 (1982). ( , C. P. Meunier. http://dx.doi.org/10.1039/f19827800225)
- 39. H. L. J. Solution Chem. 2, 2460 (1973). , C. V. Krishnan.
- 40. F. J. Chem. Soc., Faraday Trans. 1 72, 359 (1976). ( , M. Pedley, D. S. Reid. http://dx.doi.org/10.1039/f19767200359)
- 41. J. E. J. Solution Chem. 5, 631 (1976). ( , G. Perron, L. Avédikian, J. P. Morel. http://dx.doi.org/10.1007/BF00648221)
- 42. J. P. Can. J. Chem. 63, 2639 (1985). ( , C. Lhermet. http://dx.doi.org/10.1139/v85-438)
- 43. J. P. Can. J. Chem. 64, 996 (1986). ( , C. Lhermet, N. Morel-Desrosiers. http://dx.doi.org/10.1139/v86-167)
- 44. A. Can. J. Chem. 65, 2656 (1987). ( , N. Morel-Desrosiers, J. P. Morel. http://dx.doi.org/10.1139/v87-439)
- 45. J. P. J. Chem. Soc., Faraday Trans. 1 84, 2567 (1988). ( , C. Lhermet, N. Morel-Desrosiers. http://dx.doi.org/10.1039/f19888402567)
- 46. N. J. Chem. Soc., Faraday Trans. 1 85, 3461 (1989). ( , J. P. Morel. http://dx.doi.org/10.1039/f19898503461)
- 47. N. J. Chem. Soc., Faraday Trans. 87, 2173 (1991). ( , C. Lhermet, J. P. Morel. http://dx.doi.org/10.1039/ft9918702173)
- 48. N. J. Chem. Soc., Faraday Trans. 89, 1223 (1993). ( , C. Lhermet, J. P. Morel. http://dx.doi.org/10.1039/ft9938901223)
- 49. P. J. Chem. Soc., Faraday Trans. 91, 2771 (1995). ( , N. Morel-Desrosiers, J. P. Morel. http://dx.doi.org/10.1039/ft9959102771)
- 50. J. J. Chem. Soc., Faraday Trans. 89, 1741 (1993). ( , W. Liu, T. Bai, J. Lu. http://dx.doi.org/10.1039/ft9938901741)
- 51. J. Thermochim. Acta 224, 261 (1993). ( , L. Zeng, W. Liu, J. Lu. http://dx.doi.org/10.1016/0040-6031(93)80176-B)
- 52. J. J. Chem. Soc., Faraday Trans. 90, 3281 (1994). ( , W. Liu, J. Fan, J. Lu. http://dx.doi.org/10.1039/ft9949003281)
- 53. K. J. Phys. Chem. B 101, 3447 (1997). ( , J. Wang, J. Zhou, J. Lu. http://dx.doi.org/10.1021/jp963828+)
- 54. K. J. Phys. Chem. B 102, 3574 (1998). ( , J. Wang, J. Zhou, J. Lu. http://dx.doi.org/10.1021/jp973036v)
- 55. K. Can. J. Chem. B 77, 232 (1999). , J. Wang, J. Zhou, Y. Gao, J. Lu.
- 56. K. Carbohydr. Res. 325, 46 (2000). ( , J. Wang, Y. Gao, J. Lu. http://dx.doi.org/10.1016/S0008-6215(99)00298-0)
- 57. Y. J. Chem. Thermodyn. 34, 1959 (2002). , S. Gao, S. Xia, J. Wang, K. Zhuo, M. Hu.
- 58. Y. J. Chem. Eng. Data 49, 1418 (2004). ( , M. Hu, P. Mu, J. Wang, K. Zhuo. http://dx.doi.org/10.1021/je0498816)
- 59. Y. Carbohydr. Res. 341, 262 (2006). ( , M. Hu, S. Li, J. Wang, K. Zhuo. http://dx.doi.org/10.1016/j.carres.2005.11.006)
- 60. K. Fluid Phase Equilib. 258, 78 (2007). ( , G. Liu, Y. Wang, Q. Ren, J. Wang. http://dx.doi.org/10.1016/j.fluid.2007.05.025)
- 61. K. J. Chem. Thermodyn. 40, 889 (2008). ( , H. Liu, H. Zhang, Y. Liu, J. Wang. http://dx.doi.org/10.1016/j.jct.2007.12.008)
- 62. F. Carbohydr. Res. 338, 1415 (2003). ( , E. Amado-Gonzalez, M. A. Esteso. http://dx.doi.org/10.1016/S0008-6215(03)00177-0)
- 63. F. J. Chem. Eng. Data 49, 668 (2004). ( , D. Grandoso, M. Lemus. http://dx.doi.org/10.1021/je034240g)
- 64. M. H. J. Chem. Phys. 31, 1164 (1959). ( , D. Turnbull. http://dx.doi.org/10.1063/1.1730566)
- 65. H. B. Callen. Thermodynamics, John Wiley, New York (1960).
- 66. J. M. J. Appl. Chem. 2, 493 (1952). ( , J. S. Taylor. http://dx.doi.org/10.1002/jctb.5010020901)
- 67. R. J. Chem. Phys. 37, 1003 (1962). ( , R. F. Boyer. http://dx.doi.org/10.1063/1.1733201)
- 68. E. Kolloidn. Zh. 130, 89 (1953). ( , R. Heusch. http://dx.doi.org/10.1007/BF01519799)
- 69. A. V. Phys. Chem. Glasses 16, 83 (1975). .
- 70. P. R. Macromolecules 11, 117 (1978). ( , F. E. Karasz. http://dx.doi.org/10.1021/ma60061a021)
- 71. P. R. Macromolecules 20, 1712 (1987). ( . http://dx.doi.org/10.1021/ma00173a045)
- 72. J. M. J. Chem. Phys. 66, 4971 (1977). ( , G. B. Rouse, J. H. Gibbs, W. M. Risen Jr. http://dx.doi.org/10.1063/1.433798)
- 73. G. Macromolecules 16, 244 (1983). ( , F. E. Karasz, T. S. Ellis. http://dx.doi.org/10.1021/ma00236a017)
- 74. T. K. J. Polym. Sci., Polym. Lett. Ed. 22, 307 (1984). ( . http://dx.doi.org/10.1002/pol.1984.130220603)
- 75. Y. I. Food Hydrocolloids 14, 425 (2000). ( , V. Y. Grinberg, V. B. Tolstoguzov. http://dx.doi.org/10.1016/S0268-005X(00)00020-5)
- 76. Y. I. Food Hydrocolloids 16, 419 (2002). ( , S. Ablett. http://dx.doi.org/10.1016/S0268-005X(01)00117-5)
- 77. Y. I. Food Hydrocolloids 18, 363 (2004). ( . http://dx.doi.org/10.1016/S0268-005X(03)00091-2)
- 78. S. K. J. Food Sci. 36, 699 (1971). ( , C. J. King. http://dx.doi.org/10.1111/j.1365-2621.1971.tb15165.x)
- 79. R. N. J. Phys. Chem. Ref. Data 18, 809 (1989). ( , Y. B. Tewari. http://dx.doi.org/10.1063/1.555831)
- 80. F. E. J. Phys. Chem. 61, 616 (1957). ( . http://dx.doi.org/10.1021/j150551a023)
- 81. F. E. J. Phys. Chem. 56, 1093 (1952). ( , F. T. Jones, A. J. Lewis. http://dx.doi.org/10.1021/j150501a015)
- 82. F. E. J. Phys. Chem. 53, 1334 (1949). ( , F. T. Jones. http://dx.doi.org/10.1021/j150474a004)
- 83. G. Z. Zuckerind. 12, 481 (1962). .
- 84. A. N. Izv. Sib. Otd. Akad. Nauk SSSR. Ser. Khim. Nauk. 2, 11 (1989). , V. I. Kosyakov, D. V. Malakhov, E. Y. Shalaev.
- 85a. Y. CryoLett. 12, 367 (1991). , M. Karel.
- 85b. Y. Biotechnol. Prog. 6, 159 (1990). ( , M. Karel. http://dx.doi.org/10.1021/bp00002a011)
- 86. S. J. Chem. Soc., Faraday Trans. 88, 789 (1992). ( , M. J. Izzard, P. J. Lillford. http://dx.doi.org/10.1039/ft9928800789)
- 87. International Critical Tables, McGraw-Hill, New York (1928).
- 88. F. W. J. Appl. Chem. Biotechnol. 27, 599 (1977). ( , F. H. Cocks, M. L. Shepard. http://dx.doi.org/10.1002/jctb.5020270505)
- 89. E. Y. Thermochim. Acta 255, 49 (1995). ( , F. Franks. http://dx.doi.org/10.1016/0040-6031(94)02180-V)
- 90. T. Cryobiology 40, 277 (2000). ( , A. Fowler, M. Toner. http://dx.doi.org/10.1006/cryo.2000.2244)
- 91. H. Cryobiology 31, 199 (1994). ( , A. Hvidt. http://dx.doi.org/10.1006/cryo.1994.1024)
- 92. D. P. Pharm. Res. 14, 578 (1997). ( , J. J. de Pablo, H. R. Corti. http://dx.doi.org/10.1023/A:1012192725996)
- 93. P. M. J. Therm. Anal. 49, 817 (1997). .
- 94. A. M. Food Chem. 61, 139 (1998). ( , S. J. Schmidt, G. A. Day. http://dx.doi.org/10.1016/S0308-8146(97)00132-5)
- 95. C. J. J. Chem. Soc., Faraday Trans. 92, 1337 (1998). ( , F. Franks. http://dx.doi.org/10.1039/ft9969201337)
- 96. G. Carbohydr. Res. 298, 139 (1997). ( , D. Simatos, M. Catté, C. G. Dussap, J. B. Gros. http://dx.doi.org/10.1016/S0008-6215(96)00313-8)
- 97. S. A. Fluid Phase Equilib. 158–160, 411 (1999). ( , P. Rasmussen. http://dx.doi.org/10.1016/S0378-3812(99)00078-3)
- 98. M. Bull. Chem. Soc. Jpn. 41, 2591 (1968). ( , H. Suga, S. Seki. http://dx.doi.org/10.1246/bcsj.41.2591)
- 99. D. R. J. Phys. Chem. 88, 759 (1984). ( , C. A. Angell. http://dx.doi.org/10.1021/j150648a029)
- 100. A. J. Phys. Chem. 93, 4986 (1989). ( , E. Mayer, G. P. Johari. http://dx.doi.org/10.1021/j100349a061)
- 101. G. P. Science 273, 90 (1996). ( , A. Hallbrucker, E. Mayer. http://dx.doi.org/10.1126/science.273.5271.90)
- 102. G. P. Nature 330, 552 (1987). ( , A. Hallbrucker, E. Mayer. http://dx.doi.org/10.1038/330552a0)
- 103. A. Philos. Mag. 60, 170 (1989). , E. Mayer, G. P. Johari.
- 104. G. P. J. Chem. Phys. 92, 809 (1990). ( , G. Astl, E. Mayer. http://dx.doi.org/10.1063/1.458386)
- 105. G. P. J. Chem. Phys. 92, 6742 (1990). ( , A. Hallbrucker, E. Mayer. http://dx.doi.org/10.1063/1.458593)
- 106. I. Phys. Chem. Chem. Phys. 2, 1579 (2000). ( , A. Hallbrucker, E. Mayer. http://dx.doi.org/10.1039/a908688i)
- 107. I. Nature 435, E1 (2005). ( , L. Bachmann, E. Mayer, A. Hallbrucker, T. Loerting. http://dx.doi.org/10.1038/nature03707)
- 108. C. A. J. Phys. Chem. 84, 268 (1980). ( , J. C. Tucker. http://dx.doi.org/10.1021/j100440a009)
- 109. M. J. Chem. Phys. 73, 1948 (1980). ( , C. A. Angell. http://dx.doi.org/10.1063/1.440303)
- 110. K. Nature 398, 492 (1999). , C. T. Moynihan, C. A. Angell.
- 111. C. A. Science 319, 582 (2008). ( . http://dx.doi.org/10.1126/science.1131939)
- 112. Y. Nature 427, 717 (2004). ( , C. A. Angell. http://dx.doi.org/10.1038/nature02295)
- 113. P. H. Phys. Rev. E 48, 4605 (1993). ( , U. Essmann, F. Sciortino, H. E. Stanley. http://dx.doi.org/10.1103/PhysRevE.48.4605)
- 114. J. A. J. Geophys. Res. 72, 3271 (1967). ( , M. Venugopalan. http://dx.doi.org/10.1029/JZ072i012p03271)
- 115. B. V. Russ. J. Phys. Chem. 43, 1311 (1969). .
- 116. B. Biodynamica 10, 167 (1968). , D. Rasmussen.
- 117. H. D. Pure Appl. Chem. 67, 1801 (1995). ( . http://dx.doi.org/10.1351/pac199567111801)
- 118. A. Pharm. Res. 11, 1166 (1994). ( , G. Zografi. http://dx.doi.org/10.1023/A:1018945117471)
- 119. M.-A. Carbohydr. Res. 338, 2195 (2003). ( , W. MacNaughtan, I. A. Farhat. http://dx.doi.org/10.1016/S0008-6215(03)00342-2)
- 120. E. Y. J. Chem. Soc., Faraday Trans. 91, 1511 (1995). ( , F. Franks. http://dx.doi.org/10.1039/ft9959101511)
- 121. S. J. Pharm. Sci. 87, 694 (1998). ( , L. Taylor, G. Zografi, http://dx.doi.org/10.1021/JS9704801)
- 122. A. A. Int. J. Pharm. 119, 25 (1995). ( , T. Sebhatu, C. Ahlneck. http://dx.doi.org/10.1016/0378-5173(94)00364-B)
- 123. D. J. Phys. Chem. B 104, 8876 (2000). ( , J. de Pablo. http://dx.doi.org/10.1021/jp000807d)
- 124. P. D. Carbohydr. Res. 196, 11 (1990). ( , R. Parker, S. G. Ring. http://dx.doi.org/10.1016/0008-6215(90)84102-Z)
- 125. R. H. M. Cryo-Lett. 12, 113 (1991). , C. Van den Berg, F. Franks.
- 126. D. P. J. Phys. Chem. B 103, 10243 (1999). ( , J. J. de Pablo, H. R. Corti. http://dx.doi.org/10.1021/jp984736i)
- 127. L. M. Biophys. J. 71, 2087 (1996). ( , D. S. Reid, J. H. Crowe. http://dx.doi.org/10.1016/S0006-3495(96)79407-9)
- 128. M. E. J. Mol. Liq. 83, 303 (1999). ( , A. M. Elias. http://dx.doi.org/10.1016/S0167-7322(99)00094-X)
- 129. S. P. J. Therm. Anal. 47, 1391 (1996). , J. Fan, J. L. Green, E. Sanchez, C. A. Angell.
- 130. L. J. Pharm. Sci. 87, 1615 (1998). ( , G. Zografi. http://dx.doi.org/10.1021/js9800174)
- 131. P. D. Int. J. Biol. Macromol. 11, 91 (1989). ( , R. Parker, S. G. Ring, A. C. Smith. http://dx.doi.org/10.1016/0141-8130(89)90048-2)
- 132. I. I. Cryobiology 49, 62 (2004). ( , F. Levine. http://dx.doi.org/10.1016/j.cryobiol.2004.05.004)
- 133. K. Cryo-Lett. 23, 79 (2002). ( , T. S. Suzuki, R. Takai. http://dx.doi.org/10.1016/S0304-3835(02)00161-1)
- 134. H. Carbohydr. Polym. 32, 33 (1997). ( , P. Le Bail, B. Leroux, J. Davy, P. Roger, A. Buleon. http://dx.doi.org/10.1016/S0144-8617(96)00146-4)
- 135. D. M. R. Thermochim. Acta 332, 203 (1999). ( , A. C. Smith, K. W. Waldron. http://dx.doi.org/10.1016/S0040-6031(99)00075-1)
- 136. V. Int. J. Biol. Macromol. 27, 229 (2000). ( , S. Guilbert. http://dx.doi.org/10.1016/S0141-8130(00)00122-7)
- 137. B. J. Cereal Sci. 33, 213 (2001). ( , C. Icard-Vernière. http://dx.doi.org/10.1006/jcrs.2000.0357)
- 138. A. A. Macromolecules 22, 4112 (1989). ( , T. K. Kwei, A. Reiser. http://dx.doi.org/10.1021/ma00200a052)
- 139. P. J. A. Thermochim. Acta 376, 83 (2001). ( , V. R. N. Telis, A. M. Q. B. Habitante, A. Sereno. http://dx.doi.org/10.1016/S0040-6031(01)00533-0)
- 140. F. Franks. “Water and aqueous solutions: Recent advances”, in Properties of Water in Foods, D. Simatos, J. L. Multon (Eds.), pp. 497–509, Martinus Nijhoff, Dordrecht (1985).
- 141. S. Ablett, A. H. Darke, M. J. Izzard, P. J. Lillford. The Glassy State in Foods, pp. 189–206, Nottingham Press, Leicestershire, UK (1993).
- 142. T. W. Cryo-Lett. 14, 91 (1993). , K. Courtney, B. Israel.
- 143. S. Carbohydr. Res. 246, 13 (1993). ( , M. J. Izzard, P. J. Lillford, I. Arvanitoyannis, J. M. V. Blanshard. http://dx.doi.org/10.1016/0008-6215(93)84020-7)
- 144. H. Cryobiology 29, 599 (1992). ( , M. Sakurai, Y. Inone, R. Chujo, S. Kobayashi. http://dx.doi.org/10.1016/0011-2240(92)90064-9)
- 145. C. Carbohydr. Netherlands 8, 23 (1992). .
- 146. E. R. Carbohydr. Res. 300, 51 (1997). ( , J. R. Grigera. http://dx.doi.org/10.1016/S0008-6215(97)00029-3)
- 147. P. B. J. Phys. Chem. A 103, 4049 (1999). ( , J. J. de Pablo. http://dx.doi.org/10.1021/jp984102b)
- 148. F. A. Biopolymers 63, 99 (2002). ( , J. L. Willett. http://dx.doi.org/10.1002/bip.10014)
- 149. S. Pharm. Res. 20, 873 (2003). ( , Y. Aso, S. Kojima. http://dx.doi.org/10.1023/A:1023831102203)
- 150. K. J. Phys. Chem. B 107, 2394 (2003). ( , L. Heux. http://dx.doi.org/10.1021/jp0219395)
- 151. S. W. J. Chem. Phys. 121, 9565 (2004). ( , J. A. Chisholm, W. Jones, W. D. S. Motherwell. http://dx.doi.org/10.1063/1.1806792)
- 152. A. J. Phys. Chem. B 110, 19678 (2006). ( , A. Kornherr, R. Chopra, P. A. Bonnet, W. Jones, W. D. S. Motherwell, G. Zifferer. http://dx.doi.org/10.1021/jp063134t)
- 153. A. Carbohydr. Res. 342, 1470 (2007). ( , A. Kornherr, R. Chopra, W. Jones, W. D. S. Motherwell, G. Zifferer. http://dx.doi.org/10.1016/j.carres.2007.04.011)
- 154. D. Cryobiology 56, 114 (2008). ( , B. Liu, Y. Liu, C. Chen. http://dx.doi.org/10.1016/j.cryobiol.2007.11.003)
- 155. V. J. Phys. Chem. B 108, 1414 (2004). ( , W. A. J. Goddard III. http://dx.doi.org/10.1021/jp0354752)
- 156. V. J. Phys. Chem. A 108, 3699 (2004). ( , T. Ça?in, W. A. Goddard III. http://dx.doi.org/10.1021/jp036680k)
- 157. Y. Carbohydr. Res. 300, 51 (1997). .
- 158. R. M. J. Phys. Chem. B 109, 6527 (2005). ( , P. G. Debenedetti. http://dx.doi.org/10.1021/jp0458553)
- 159. H. M. Phys. Rev. E 73, 061507 (2006). ( , N. B. Wilding. http://dx.doi.org/10.1103/PhysRevE.73.061507)
- 160. V. Phys. Rev. Lett. 97, 075701 (2006). ( , S. Sastry, C. A. Angell. http://dx.doi.org/10.1103/PhysRevLett.97.075701)
- 161. C. A. J. Non-Cryst. Solids 354, 4703 (2008). ( . http://dx.doi.org/10.1016/j.jnoncrysol.2008.05.054)
- 162. V. Kapko, D. V. Matyushov, C. A. Angell. To be published.
- 163. G. Ann. Chem. 2, 233 (1957). .