Pure Appl. Chem., 2010, Vol. 82, No. 4, pp. 871-878
http://dx.doi.org/10.1351/PAC-CON-09-10-12
Published online 2010-03-10
Tetradehydrodinaphtho[10]annulene and its transformation into zethrene: A hitherto unknown dehydroannulene and a forgotten aromatic hydrocarbon
References
- 1. E. L. Chem. Rev. 106, 5344 (2006). ( , C. A. Johnson II, M. M. Haley. http://dx.doi.org/10.1021/cr050541c)
- 2a. For example, see: S. H. J. Am. Chem. Soc. 128, 9264 (2006). ( , T. V. Jones, H. Seyler, J. O. Peters, T. H. Kim, J. Y. Chang, G. N. Tew. http://dx.doi.org/10.1021/ja060354b)
- 2b. S. H. Angew. Chem., Int. Ed. 45, 7526 (2006). ( , J. Y. Chang, G. N. Tew. http://dx.doi.org/10.1002/anie.200600688)
- 2c. K. J. Am. Chem. Soc. 128, 16613 (2006). ( , S. Furukawa, H. Uji-i, T. Uchino, T. Ichikawa, J. Zhang, W. Mamdouh, M. Sonoda, F. C. De Schryver, S. De Feyter, Y. Tobe. http://dx.doi.org/10.1021/ja0655441)
- 2d. E. L. J. Org. Chem. 72, 86 (2007). ( , L. D. Shirtcliff, M. M. Haley. http://dx.doi.org/10.1021/jo061712w)
- 2e. E. L. Tetrahedron 64, 11469 (2008). ( , M. M. Haley. http://dx.doi.org/10.1016/j.tet.2008.08.059)
- 2f. A. J. Am. Chem. Soc. 128, 13972 (2006). ( , R. Guda, M. M. Haley, T. Goodson III. http://dx.doi.org/10.1021/ja062709x)
- 2g. K. ChemPhysChem 8, 2671 (2007). ( , L. Antonov, S. Yamada, K. Ohta, T. Yoshimura, K. Tahara, A. Inaba, M. Sonoda, Y. Tobe. http://dx.doi.org/10.1002/cphc.200700555)
- 3. R. Org. Lett. 11, 4104 (2009). ( , D. Hibi, K. Miki, Y. Tobe. http://dx.doi.org/10.1021/ol9015942)
- 4. E. Chem. Ber. 88, 1520 (1955). ( , K. F. Lang, H. Schluz-Kiesow. http://dx.doi.org/10.1002/cber.19550881008)
- 5a. H. A. Angew. Chem., Int. Ed. Engl. 7, 226 (1968). ( , A. Nissen, J. Ipaktschi. http://dx.doi.org/10.1002/anie.196802261)
- 5b. H. A. Chem. Ber. 104, 1182 (1971). ( , J. Ipaktschi, A. Nissen. http://dx.doi.org/10.1002/cber.19711040422)
- 6. R. H. Tetrahedron 26, 2141 (1970). ( , F. Sondheimer. http://dx.doi.org/10.1016/S0040-4020(01)92792-9)
- 7a. K. Tetrahedron Lett. 8, 3121 (1967). ( , F. Sondheimer. http://dx.doi.org/10.1016/S0040-4039(00)90927-4)
- 7b. H. W. J. Org. Chem. 34, 874 (1969). ( Jr., J. K. Reed. http://dx.doi.org/10.1021/jo01256a022)
- 7c. R. W. J. Chem. Soc. C 3485 (1971). ( , D. T. Edley. http://dx.doi.org/10.1039/j39710003485)
- 7d. N. J. Chem. Soc. D, Chem. Commun. 1516 (1971). ( , C. U. Kim, J. A. Salaün, K. W. Shelton, S. Takada, S. Masamune. http://dx.doi.org/10.1039/c29710001516)
- 7e. A. G. J. Am. Chem. Soc. 114, 10986 (1992). ( , N. S. Finney. http://dx.doi.org/10.1021/ja00053a059)
- 8. Although the formation of 2a was invoked in the purported synthesis of dinaphtho[10]annulene too, this method is less practical than those reported in refs. [5,6]. See ref. [5b] and the following papers.
- 8a. W. J. Chem. Soc., Perkin Trans. 1 2812 (1980). ( , I. T. Storie, C. D. Tulloch. http://dx.doi.org/10.1039/p19800002812)
- 8b. R. Helv. Chim. Acta 70, 480 (1987); indeed, Mitchell and Sondheimer reported the formation of 2a from dinaphtho[10]annulene via 7,14-dihydrozethrene. ( , H. P. Schaaff, H. Rodewald, R. Jahn, H. Irngartinger. http://dx.doi.org/10.1002/hlca.19870700228)
- 8c. R. H. J. Am. Chem. Soc. 90, 530 (1968). ( , F. Sondheimer. http://dx.doi.org/10.1021/ja01004a080)
- 9. After our preliminary communication was published online, we were informed by Prof. Y. T. Wu of National Cheng Kung University that his group has discovered a more efficient way to prepare 7,14-diarylzethrene derivatives. We are grateful to Prof. Wu for sharing his results with us.
- 10. R. H. Tetrahedron 24, 1397 (1968). ( , F. Sondheimer. http://dx.doi.org/10.1016/0040-4020(68)88091-3)
- 11a. For examples of Pd(0)/Cu(I)-catalyzed coupling with in situ desilylation, see: M. J. Org. Lett. 4, 3199 (2002). ( , L. C. Kopel, J. B. Braun, T. L. Gadzikwa, K. L. Hull, R. G. Brisbois, C. J. Markworth, P. A. Grieco. http://dx.doi.org/10.1021/ol026266n)
- 11b. W. B. Tetrahedron Lett. 39, 6795 (1998). ( , D. B. Kimball, M. M. Haley. http://dx.doi.org/10.1016/S0040-4039(98)01583-4)
- 12. P. v. R. J. Am. Chem. Soc. 118, 6317 (1996). ( , C. Maerker, A. Dransfeld, H. Jiao, N. J. R. v. E. Hommes. http://dx.doi.org/10.1021/ja960582d)
- 13. For the geometry optimization, the B3LYP/6-31G(d) method is considered to give satisfactory results for annulenes [14]. For the NICS calculations, we employed the HF method as had been used in the original work of Schleyer [12], because this method had been shown to be most reliable to evaluate the chemical shifts (i.e., magnetic properties) of annulenes [14a].
- 14a. For example, see: R. V. J. Am. Chem. Soc. 124, 13495 (2002). ( , J. R. Armantrout, B. Twamley, R. H. Mitchell, T. R. Ward, S. Bandyopadhyay. http://dx.doi.org/10.1021/ja020595t)
- 14b. D. B. J. Org. Chem. 67, 8798 (2002). ( , M. M. Haley, R. H. Mitchell, T. R. Ward, S. Bandyopadhyay, R. V. Williams, J. R. Armantrout. http://dx.doi.org/10.1021/jo020462q)
- 14c. A. J. J. Org. Chem. 67, 8812 (2002). ( , M. M. Haley, R. V. Williams, J. R. Armantrout. http://dx.doi.org/10.1021/jo020463i)
- 15. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople. Gaussian 03, Gaussian, Inc., Wallingford CT, 2004.
- 16. R. J. Am. Chem. Soc. 97, 658 (1975). ( , T. Pilati, M. Simonetta. http://dx.doi.org/10.1021/ja00836a041)
- 17. G. J. Angew. Chem., Int. Ed. 40, 2509 (2001). ( , S. R. Parkin, J. E. Anthony. http://dx.doi.org/10.1002/1521-3773(20010702)40:13<2509::AID-ANIE2509>3.0.CO;2-F)
- 18. Q. J. Org. Chem. 59, 1294 (1995). ( , P. J. Carroll, T. M. Swager. http://dx.doi.org/10.1021/jo00085a016)
- 19a. J. J. Am. Chem. Soc. 88, 603 (1966). ( , F. Sondheimer. http://dx.doi.org/10.1021/ja00955a038)
- 19b. G. Chem. Lett. 37, 1296 (2008). ( , A. Orita, J. Otera. http://dx.doi.org/10.1246/cl.2008.1296)
- 20. D. Organometallics 12, 1266 (1993). ( , A. Djebli, L. Chen. E. A. Zarate, C. A. Tessier, W. J. Youngs. http://dx.doi.org/10.1021/om00028a049)
- 21. Representative patents include an electroluminescent device possessing a red light-emitting layer of 4,11-bis(phenylamino)- and 4,11-bis(diphenylamino)zethrene [W. Sotoyama, H. Sato, A. Matsuura. PCT Int. Appl. WO 03/002687, A1, (2003)] and organic transistor consisting of 7,14-bis[4-(4-hexyl-2-thienyl)-2-thienyl]zethrene [J. R. Moon. KR 2007101430, A, (2007)]. However, except for the first one, most of the patents do not report synthetic methods of zethrene derivatives.
- 22. A. New J. Chem. 30, 215 (2006). ( , Z. B. Maksić. http://dx.doi.org/10.1039/b514624k)
- 23. M. Comp. Lett. 3, 333 (2007). ( , R. Kishi, A. Takebe, M. Nate, H. Takahashi, T. Kubo, K. Kamada, K. Ohta, B. Champagne, E. Botek. http://dx.doi.org/10.1163/157404007782913435)
- 24. M. Chem. Phys. Lett. 418, 142 (2006). ( , T. Kubo, K. Kamada, K. Ohta, R. Kishi, S. Ohta, N. Nakagawa, H. Takahashi, S.-i. Furukawa, Y. Morita, K. Nakasuji, K. Yamaguchi. http://dx.doi.org/10.1016/j.cplett.2005.10.109)
- 25a. For experimental proofs for the diradical character in derivatives of 8/8', see: T. Angew. Chem., Int. Ed. 44, 6564 (2005). ( , A. Shimizu, M. Sakamoto, M. Uruichi, K. Yakushi, M. Nakano, D. Shiomi, K. Sato, T. Takui, Y. Morita, K. Nakasuji. http://dx.doi.org/10.1002/anie.200502303)
- 25b. A. Angew. Chem., Int. Ed. 48, 5482 (2009). ( , M. Uruichi, K. Yakushi, H. Matsuzaki, H. Okamoto, M. Nakano, Y. Hirao, K. Matsumoto, H. Kurata, T. Kubo. http://dx.doi.org/10.1002/anie.200901382)
- 26. For ZINDO/S calculations for the HOMO–LUMO gaps of 2a (2.52 eV) and pentacene (2.40 eV), see: Y. J. Phys. Chem. A 106, 11283 (2002). ( . http://dx.doi.org/10.1021/jp021152e)
- 27. Neither dilute solutions of 2c,d were sensitive to light and oxygen. When heated, solid samples of 2c,d started to decompose from 120 and 220 °C, respectively, and did not show melting points.
- 28. Y. J. Am. Chem. Soc. 126, 8138 (2004). ( , T. Suzuki, M. Kobayashi, Y. Gao, Y. Fukai, Y. Inoue, F. Sato, S. Tokito. http://dx.doi.org/10.1021/ja0476258)
- 29. C. R. Org. Lett. 7, 3163 (2005). ( , S. R. Parkin, J. E. Bullock, J. E. Anthony, A. C. Mayer, G. G. Malliaras. http://dx.doi.org/10.1021/ol050872b)
- 30. R. A. Chem. Rev. 106, 4809 (2006). ( . http://dx.doi.org/10.1021/cr050550l)