Pure Appl. Chem., 2010, Vol. 82, No. 3, pp. 635-647
http://dx.doi.org/10.1351/PAC-CON-09-10-31
Published online 2010-02-14
Heteroatoms moving protons: Synthetic and mechanistic studies of bifunctional organometallic catalysis
References
- 1. C. . Chem. Ind. (London) 740 (1999).
- 2. The Chemical Industry Vision2020 Technology Partnership (1996).
- 3. N. S. , D. G. Nocera. Proc. Nat. Acad. Sci. USA 103, 15729 (2006). (http://dx.doi.org/10.1073/pnas.0603395103)
- 4. D. B. , D. Combs, S. Van, G. Aguirre, F. Ortega. Inorg. Chem. 39, 2080 (2000). (http://dx.doi.org/10.1021/ic990995q)
- 5. D. B. , C. D. Incarvito, A. L. Rheingold. Angew. Chem., Int. Ed. Engl. 40, 3884 (2001). (http://dx.doi.org/10.1002/1521-3773(20011015)40:20<3884::AID-ANIE3884>3.0.CO;2-7)
- 6a. G. , H. Steinhagen. Angew. Chem., Int. Ed. 35, 2339 (1996).
- 6b. E. K. , B. L. Feringa. Tetrahedron 54, 12985 (1998). (http://dx.doi.org/10.1016/S0040-4020(98)00319-6)
- 6c. G. J. . Tetrahedron 57, 1865 (2001). (http://dx.doi.org/10.1016/S0040-4020(01)00057-6)
- 6d. S. E. , A. Hadzovic, R. H. Morris. Coord. Chem. Rev. 248, 2201 (2004). (http://dx.doi.org/10.1016/j.ccr.2004.04.007)
- 6e. D. B. . Chem.—Eur. J. 11, 7146 (2005). (http://dx.doi.org/10.1002/chem.200500253)
- 6f. T. , K. Murata, R. Noyori. Org. Biomol. Chem. 4, 393 (2006). (http://dx.doi.org/10.1039/b513564h)
- 6g. S. , G. W. Brudvig, R. H. Crabtree. Chem. Commun. (Cambridge) 413 (2008). (http://dx.doi.org/10.1039/b710355g)
- 6h. D. , J. C. Mareque-Rivas. Chem. Commun. (Cambridge) 425 (2008). (http://dx.doi.org/10.1039/b709650j)
- 6i. D. H. , C. J. Abraham, M. T. Scerba, E. Alden-Danforth, T. Lectka. Acc. Chem. Res. 41, 655 (2008). (http://dx.doi.org/10.1021/ar700261a)
- 7. E. , P. Arnoldy, P. H. M. Budzelaar. J. Organomet. Chem. 455, 247 (1993). (http://dx.doi.org/10.1016/0022-328X(93)80406-2)
- 8. E. , P. Arnoldy, P. H. M. Budzelaar. J. Organometal. Chem. 475, 57 (1994). (http://dx.doi.org/10.1016/0022-328X(94)84007-5)
- 9. A. , V. Beghetto, E. Campagna, M. Zanato, U. Matteoli. Organometallics 17, 630 (1998). (http://dx.doi.org/10.1021/om9705968)
- 10. A. , P. G. Edwards, P. D. Newman, R. P. Tooze, S. J. Colesa, M. B. Hursthouse. J. Chem. Soc., Dalton Trans. 1113 (1999). (http://dx.doi.org/10.1039/a809624d)
- 11. G. R. . Chem. Rev. 93, 2067 (1993). (http://dx.doi.org/10.1021/cr00022a006)
- 12. Z.-Z. , H. Cheng. Coord. Chem. Rev. 147, 1 (1996). (http://dx.doi.org/10.1016/0010-8545(94)01112-5)
- 13. H. , J. L. Cocho, Z. Frackman, R. S. Brown. J. Am. Chem. Soc. 106, 2421 (1984). (http://dx.doi.org/10.1021/ja00320a032)
- 14. F.-J. Wu, D. M. Jr., K. S. Hagen, P. D. Nyman, P. G. Debrunner, V. A. Vankai. Inorg. Chem. 29, 5174 (1990).
- 15. C. , W. Allen, G. Parkin. J. Chem. Soc., Chem. Commun. 1813 (1995). (http://dx.doi.org/10.1039/c39950001813)
- 16. T. N. , W. E. Allen, P. S. White. Inorg. Chem. 34, 952 (1995). (http://dx.doi.org/10.1021/ic00108a030)
- 17. M. A. , S. Fujinami, H. Senda, H. Nishikawa. J. Chem. Soc., Dalton Trans. 1655 (1999). (http://dx.doi.org/10.1039/a900450e)
- 18. F. , A. Burini, R. Galassi, A. Macchioni, B. R. Pietroni, F. Ziarelli, C. Zuccaccia. J. Organomet. Chem. 593–594, 392 (2000). (http://dx.doi.org/10.1016/S0022-328X(99)00470-2)
- 19. C. , R. Bravi, M. A. Ciriano, L. A. Oro, M. Bordonaba, C. Graiff, A. Tiripicchio, A. Burini. Organometallics 19, 3115 (2000). (http://dx.doi.org/10.1021/om0001671)
- 20. C. , M. A. Ciriano, R. Bravi, L. A. Oro, C. Graiff, R. Galassi, A. Burini. Inorg. Chim. Acta 347, 129 (2003). (http://dx.doi.org/10.1016/S0020-1693(02)01447-0)
- 21. T. , M. Tokunaga, Y. Wakatsuki. Org. Lett. 3, 735 (2001). (http://dx.doi.org/10.1021/ol0003937)
- 22. D. B. , D. A. Lev. J. Am. Chem. Soc. 126, 12232 (2004). (http://dx.doi.org/10.1021/ja046360u)
- 23. D. B. . Chem.—Eur. J. 11, 7146 (2005). (http://dx.doi.org/10.1002/chem.200500253)
- 24. D. B. , Y. Gong, A. G. DiPasquale, L. N. Zakharov, A. L. Rheingold. Organometallics 25, 5693 (2006). (http://dx.doi.org/10.1021/om060880b)
- 25. D. B. , Y. Gong, L. N. Zakharov, J. A. Golen, A. L. Rheingold. J. Am. Chem. Soc. 128, 438 (2006). (http://dx.doi.org/10.1021/ja054779u)
- 26. D. B. , X. Zeng, A. L. Cooksy. J. Am. Chem. Soc. 128, 2798 (2006). (http://dx.doi.org/10.1021/ja058736p)
- 27. D. B. , X. Zeng, A. L. Cooksy, W. S. Kassel, A. G. DiPasquale, L. N. Zakharov, A. L. Rheingold. Organometallics 26, 3385 (2007). (http://dx.doi.org/10.1021/om700355r)
- 28. D. B. . Dalton Trans. 6497 (2008). (http://dx.doi.org/10.1039/b809274e)
- 29. D. B. , E. J. Kragulj, C. D. Zeinalipour-Yazdi, V. Miranda-Soto, D. A. Lev, A. L. Cooksy. J. Am. Chem. Soc. 130, 10860 (2008). (http://dx.doi.org/10.1021/ja803106z)
- 30. D. B. , V. Miranda-Soto, E. J. Kragulj, D. A. Lev, G. Erdogan, X. Zeng, A. L. Cooksy. J. Am. Chem. Soc. 130, 20 (2008). (http://dx.doi.org/10.1021/ja0774616)
- 31. D. B. , X. Zeng, A. L. Cooksy, W. S. Kassel, A. G. DiPasquale, L. N. Zakharov, A. L. Rheingold. Organometallics 27, 3626 (2008). (http://dx.doi.org/10.1021/om8002569)
- 32. G. , D. B. Grotjahn. J. Am. Chem. Soc. 131, 10354 (2009). (http://dx.doi.org/10.1021/ja903519a)
- 33. D. B. , D. A. Lev. Catal. Org. React. 104, 227 (2005).
- 34. D. B. Grotjahn, J. E. Kraus, H. Amouri, M.-N. Rager, S. A. Cortes-Llamas, A. A. Mallari, A. G. DiPasquale, L. M. Liable-Sands, J. A. Golen, L. N. Zakharov, C. Moore, A. L. Rheingold. J. Am. Chem. Soc. (2010). Under revision.
- 35. M. E. , G. Piizzi. Chem. Rev. 105, 1735 (2005). (http://dx.doi.org/10.1021/cr940337h)
- 36. K. L. , Q. L. Wang, D. M. Bregel, N. A. Smythe, B. A. O’Neill, K. I. Goldberg, K. G. Moloy. Organometallics 24, 4624 (2005). (http://dx.doi.org/10.1021/om0500467)
- 37. V. , P. Mastrorilli, C. F. Nobile, P. Braunstein, U. Englert. Dalton Trans. 2342 (2006). (http://dx.doi.org/10.1039/b514787e)
- 38. S. M. . J. Org. Chem. 73, 2466 (2008). (http://dx.doi.org/10.1021/jo702665r)
- 39. L. , T. T. Dang, A. Labonne, T. Kribber, L. Xiao, P. Naumov. Chem.–Eur. J. 15, 7167 (2009). (http://dx.doi.org/10.1002/chem.200900563)
- 40. L. , L. Xiao, A. Labonne. Angew. Chem., Int. Ed. 47, 8246 (2008). (http://dx.doi.org/10.1002/anie.200803312)
- 41. A. , T. Kribber, L. Hintermann. Org. Lett. 8, 5853 (2006). (http://dx.doi.org/10.1021/ol062455k)
- 42. M. , T. Suzuki, N. Koga, T. Fukushima, A. Horiuchi, Y. Wakatsuki. J. Am. Chem. Soc. 123, 11917 (2001). (http://dx.doi.org/10.1021/ja0119292)
- 43. W. , P. Zbinden, P. A. Pittet, T. Armbruster, H. B. Bürgi, A. E. Merbach, A. Ludi. Inorg. Chem. 30, 2350 (1991). (http://dx.doi.org/10.1021/ic00010a024)
- 44. Y. . J. Organomet. Chem. 689, 4092 (2004). (http://dx.doi.org/10.1016/j.jorganchem.2004.05.052)
- 45. J. R. , J. P. Selegue. J. Am. Chem. Soc. 114, 5518 (1992). (http://dx.doi.org/10.1021/ja00040a005)
- 46. M. , J. Leszczynski, J. Sadlej. J. Chem. Phys. 112, 7930 (2000). (http://dx.doi.org/10.1063/1.481394)
- 47. S. , F. Cordier, V. Jaravine, M. Barfield. Prog. Nucl. Magn. Res. Spect. 45, 275 (2004). (http://dx.doi.org/10.1016/j.pnmrs.2004.08.001)
- 48. J. E. , S. A. Perera, R. J. Bartlett, M. Yanez, O. Mo, J. Elguero, I. Alkorta. J. Phys. Chem. A 107, 3222 (2003). (http://dx.doi.org/10.1021/jp021619l)
- 49. J. Zhu, Z. Lin. In Metal Vinylidenes and Allenylidenes in Catalysis, C. Bruneau, P. H. Dixneuf (Eds.), Wiley-VCH, Weinheim, Germany (2008).
- 50. V. , M. P. Gamasa, J. Gimeno, C. Gonzalez-Bernardo, E. Perez-Carreno, S. Garcia-Granda. Organometallics 20, 5177 (2001). (http://dx.doi.org/10.1021/om010308e)
- 51. M. , P. Alvarez, J. Gimeno, E. Lastra. Organometallics 23, 5127 (2004). (http://dx.doi.org/10.1021/om040068d)
- 52. M. , V. Cadierno, J. Gimeno, C. Pasquini. Organometallics 27, 5009 (2008). (http://dx.doi.org/10.1021/om800484u)
- 53. F. , A. Sgamellotti, N. Re. Dalton Trans. 3225 (2004). (http://dx.doi.org/10.1039/b408452g)
- 54. F. , A. Sgamellotti, N. Re. Organometallics 21, 5944 (2002). (http://dx.doi.org/10.1021/om020723m)
- 55. A footnote in Table 2 of a recent article by the author [28] gives the mistaken impression that the chemical shifts given are relative to formamide δN = 0 ppm when in fact they are relative to formamide δN = –267.8 ppm. It should be emphasized that for 15N NMR spectroscopy there is a wide variety of reference standards and even different assignment of positive and negative signs for chemical shift changes. Neat external CH3NO2 has been advocated as the most reliable standard [55]; our data were acquired using a standard supplied by Varian (90 % formamide in DMSO-d6) and setting its observed chemical shift as –267.8 ppm, under which conditions the 15N chemical shift of CH3NO2 would equal 0 ppm [34,56]. J. , L. F. Larkworthy, E. A. Moore. Chem. Rev. 102, 913 (2002). (http://dx.doi.org/10.1021/cr000075l)
- 56. L. , E. Szlyk, J. Sitkowski, B. Kamienski, L. Kozerski, J. Tousek, R. Marek. Magn. Res. Chem. 44, 163 (2006). (http://dx.doi.org/10.1002/mrc.1740)
- 57. R. , A. Lycka, E. Kolehmainen, E. Sievanen, J. Tousek. Curr. Org. Chem. 11, 1154 (2007). (http://dx.doi.org/10.2174/138527207781662519)
- 58. R. , A. Lycka. Curr. Org. Chem. 6, 35 (2002). (http://dx.doi.org/10.2174/1385272023374643)
- 59. D. V. , B. Ip, A. A. Gurinov, P. M. Tolstoy, G. S. Denisov, I. G. Shenderovich, H.-H. Limbach. J. Phys. Chem. A 110, 10872 (2006). (http://dx.doi.org/10.1021/jp0616821)
- 60. A. L. Cooksy. Unpublished results.
- 61. D. B. , C. R. Larsen, J. L. Gustafson, R. Nair, A. Sharma. J. Am. Chem. Soc. 129, 9592 (2007). (http://dx.doi.org/10.1021/ja073457i)
- 62. D. B. , C. Larsen, G. Erdogan, J. Gustafson, A. Sharma, R. Nair. Catal. Org. React. 123, 379 (2009).
- 63. T. , W. J. Catallo. Chem. Soc. Rev. 26, 401 (1997). (http://dx.doi.org/10.1039/cs9972600401)
- 64. J. , V. Derdau, T. Fey, J. Zimmermann. Angew. Chem., Int. Ed. 46, 7744 (2007). (http://dx.doi.org/10.1002/anie.200700039)
- 65. M. H. G. , M. Hoelscher, Y. Ben-David, N. Theyssen, R. Loschen, D. Milstein, W. Leitner. Angew. Chem., Int. Ed. 46, 2269 (2007). (http://dx.doi.org/10.1002/anie.200603677)
- 66. J. W. , H. Felkin. Organometallics 4, 1488 (1985). (http://dx.doi.org/10.1021/om00127a044)
- 67. J. W. , C. J. Smart. Organometallics 8, 602 (1989). (http://dx.doi.org/10.1021/om00105a005)
- 68. B. , R. Cohen, Y. Ben-David, J. M. L. Martin, D. Milstein. J. Am. Chem. Soc. 125, 11041 (2003). (http://dx.doi.org/10.1021/ja029197g)
- 69. C. M. , M. B. Skaddan, R. G. Bergman. J. Am. Chem. Soc. 126, 13033 (2004). (http://dx.doi.org/10.1021/ja046825g)
- 70. G. , R. Rudolph, H. Pritzkow, M. Enders. Organometallics 24, 4774 (2005). (http://dx.doi.org/10.1021/om050438d)
- 71. J. , J. F. Hartwig. Angew. Chem., Int. Ed. 47, 5783 (2008). (http://dx.doi.org/10.1002/anie.200801992)
- 72. T. , A. Labonne, L. Hintermann. Synthesis 2809 (2007).
- 73. A. , L. Zani, L. Hintermann, C. Bolm. J. Org. Chem. 72, 5704 (2007). (http://dx.doi.org/10.1021/jo070745o)
- 74. L. , T. Kribber, A. Labonne, E. Paciok. Synlett 2412 (2009). (http://dx.doi.org/10.1055/s-0029-1217734)
- 75. T. , H. Yamashita, K. Sawada, M. Utsunomiya, K. Takahashi, K. Takai. Organometallics 24, 6287 (2005). (http://dx.doi.org/10.1021/om050792b)
