CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2010, Vol. 82, No. 12, pp. 2315-2335

http://dx.doi.org/10.1351/PAC-REP-09-09-02

Published online 2010-11-02

Fluorescence standards: Classification, terminology, and recommendations on their selection, use, and production (IUPAC Technical Report)

Ute Resch-Genger1* and Paul C. DeRose2

1 Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany
2 National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899-8312, USA

References

  • 1. J. R. Lakowicz. Principles of Fluorescence Spectroscopy, 3rd ed., Springer Science+Business, New York (2006).
  • 2. J. R. Lakowicz (Ed.). Topics in Fluorescence Spectroscopy Series, Vols. 1–8, Plenum Press, New York (1992–2004).
  • 3. O. S. Wolfbeis (Ed.). Springer Series on Fluorescence, Methods and Applications, Vols. 1–3, Springer, Berlin (2001–2004).
  • 4. S. G. Schulman (Ed.). Molecular Luminescence Spectroscopy, Parts 1–3, Wiley Interscience, New York (1985–1993).
  • 5. W. T. Mason. Fluorescent and Luminescent Probes for Biological Activity, 2nd ed., Academic Press, San Diego (1999).
  • 6. B. Valeur. Molecular Fluorescence: Principles and Application, Wiley-VCH, Weinheim (2002).
  • 7. U. Resch-Genger (Ed.). Springer Series Methods and Applications of Fluorescence: Parts I and II, Vols. 5 and 6, O. S. Wolfbeis (Series Ed.), Springer, Berlin (2008).
  • 8. K. D. Mielenz. Optical Radiation Measurements, Vol. 3, Measurement of Photoluminescence, Academic Press, New York (1982).
  • 9. C. Burgess, D. G. Jones. Spectrophotometry, Luminescence and Colour, Elsevier, Amsterdam (1995).
  • 10. A. K. Gaigalas, L. Li, O. Henderson, R. Vogt, J. Barr, G. Marti, J. Weaver, A. Schwartz. J. Res. Natl. Inst. Stand. Technol. 106, 381 (2001).
  • 11. U. Resch-Genger, K. Hoffmann, W. Nietfeld, A. Engel, B. Ebert, R. Macdonald, J. Neukammer, D. Pfeifer, A. Hoffmann. J. Fluoresc. 15, 337 (2005). (http://dx.doi.org/10.1007/s10895-005-2630-3)
  • 12. C. A. Parker. Photoluminescence of Solutions, Elsevier, Amsterdam (1968).
  • 13. N. M. Marin, N. MacKinnon, C. MacAulay, S. K. Chang, E. N. Atkinson, D. Cox, D. Serachitopol, B. Pikkula, M. Follen, R. Richards-Kortum. J. Biomed. Opt. 11, 014010-1 (2006). (http://dx.doi.org/10.1117/1.2166389)
  • 14. D. M. Jameson, J. C. Croney, P. D. J. Moens. Methods Enzymol. 360, 1 (2003). (http://dx.doi.org/10.1016/S0076-6879(03)60105-9)
  • 15. B. Nickel. EPA Newslett. 58, 9 (1996).
  • 16. B. Nickel. EPA Newslett. 61, 27 (1997).
  • 17. B. Nickel. EPA Newslett. 64, 19 (1998).
  • 18. A. Credi, L. Prodi. Spectrochim. Acta, Part A 54, 159 (1998).
  • 19. M. Montalti, A. Credi, L. Prodi, M. T. Gandolfi. Handbook of Photochemistry, 3rd ed., CRC Taylor & Francis, Boca Raton (2006).
  • 20. ASTM E 388-04. “Spectral bandwidth and wavelength accuracy of fluorescence spectrometers”, in Annual Book of ASTM Standards, Vol. 03.06 (2004, original version 1972).
  • 21. ASTM E 578-01. “Linearity of fluorescence measuring system”, in Annual Book of ASTM Standards, Vol. 03.06 (2001, original version 1983).
  • 22. ASTM E 579-04. “Limit of detection of fluorescence of quinine sulfate”, in Annual Book of ASTM Standards, Vol. 03.06 (2004, original version 1984).
  • 23. J. N. Miller (Ed.). Techniques in Visible and Ultraviolet Spectrometry, Vol. 2, Standards in Fluorescence Spectrometry, Chapman and Hall, New York (1981).
  • 24. D. F. Eaton. Pure Appl. Chem. 60, 1107 (1988). (http://dx.doi.org/10.1351/pac198860071107)
  • 25. D. F. Eaton. EPA Newslett. 23–24, 47 (1985).
  • 26. ASTM E 2719. “Standard guide for fluorescence—instrument calibration and validation”, in Annual Book of ASTM Standards, Vol. 03.06 (2010).
  • 27. P. C. DeRose. NISTIR 7457, National Institute of Standards and Technology, Gaithersburg, MD (2007).
  • 28. P. C. DeRose. NISTIR 7458, National Institute of Standards and Technology, Gaithersburg, MD (2007).
  • 29. National Committee for Clinical Laboratory Standards. Fluorescence Calibration and Quantitative Measurement of Fluorescence Intensity; Approved Guideline, NCCLS document I/LA24-A, USA (2004).
  • 30a. Commission Internationale de l’Eclaire. Intercomparison on Measurement of (Total) Radiance Factor of Luminescent Specimens, CIE Publication No. 76 (1988).
  • 30b. Commission Internationale de l’Eclaire. A Method for Assessing the Quality of Daylight Simulators for Colorimetry, CIE Publication No. 51 (TC 1.3) (1981).
  • 30c. Commission Internationale de l’Eclaire. Calibration Methods and Photoluminescent Standards for Total Radiance Factor Measurements, CIE Publication No. 182 (TC 2-25) (2007).
  • 31. D. C. Rich, D. Martin. Anal. Chem. Acta 380, 263 (1999). (http://dx.doi.org/10.1016/S0003-2670(98)00549-2)
  • 32. R. A. Velapoldi. “Liquid standards in fluorescence spectrometry”, in Advances in Standards and Methodology in Spectrophotometry, C. Burgess, K. D. Mielenz (Eds.), Elsevier, Amsterdam (1987).
  • 33. R. A. Velapoldi, M. S. Epstein. “Luminescence standards for macro- and microspectro-fluorometry”, in Luminescence Applications in Biological, Chemical, Environmental and Hydrological Sciences, M. C. Goldberg (Ed.), ACS Symposium Series No. 383, pp. 97–126, American Chemical Society, Washington, DC (1989).
  • 34. R. A. Velapoldi, H. H. Tonnesen. J. Fluoresc. 14, 465 (2004). (http://dx.doi.org/10.1023/B:JOFL.0000031828.96368.c1)
  • 35. J. W. Hofstraat, M. J. Latuhihin. Appl. Spectrosc. 48, 436 (1994). (http://dx.doi.org/10.1366/000370294775269027)
  • 36. G. Kortüm, B. Finckh. Spectrochim. Acta 2, 137 (1941–1944). (http://dx.doi.org/10.1016/S0371-1951(41)80085-X)
  • 37. E. Lippert, W. Nägele, I. Seibold-Blankenstein, U. Staiger, W. Voss. Z. Anal. Chem. 170, 1 (1959). (http://dx.doi.org/10.1007/BF00448550)
  • 38. R. J. Argauer, C. E. White. Anal. Chem. 36, 368 (1964). (http://dx.doi.org/10.1021/ac60208a038)
  • 39. J. A. Gardecki, M. Maroncelli. Appl. Spectrosc. 52, 1179 (1998). (http://dx.doi.org/10.1366/0003702981945192)
  • 40. A. Thompson, K. L. Eckerle. Proc. SPIE-Int. Soc. Opt. Eng. 1054, 20 (1989).
  • 41. National Institute of Standards and Technology (NIST). Certificate of analysis, Standard Reference Material 1931, Fluorescence emission standards for the visible region (1989). This set of four solid spectral fluorescence standards in a cuvette format, that is no longer available, was restricted in measurement geometry and certified using polarizers.
  • 42. ISO/IEC/EN 17025. General Requirements for the Competence of Calibration and Testing Laboratories, 2nd ed., International Organization for Standardization, Geneva (2005).
  • 43. D. F. Eaton. Pure Appl. Chem. 62, 1631 (1990). (http://dx.doi.org/10.1351/pac199062081631)
  • 44. K. Rurack, U. Resch-Genger. Determination of the photoluminescence quantum yield of dilute dye solutions (IUPAC Project #2004-021-1-300, <http://www.iupac.org/web/ins/2004-021-1-300>).
  • 45. A. M. Brouwer. Standards for photoluminescence quantum yield measurements in solution (IUPAC Project #2004-021-1-300).
  • 46. M. Ameloot, M. vandeVen, A. U. Acuña, B. Valeur. Fluorescence anisotropy measurements in solution: Methods and reference materials (IUPAC Project #2004-021-1-300, <http://www.iupac.org/web/ins/2004-021-1-300>).
  • 47. H. Lemmetyinen, N. Tkachenko, B. Valeur, N. Boens, M. Ameloot, N. Ernsting, T. Gustavsson, J.-I. Hotta. Time-resolved fluorescence methods (IUPAC Project #2004-021-1-300, <http://www.iupac.org/web/ins/2004-021-1-300>).
  • 48. S. E. Braslavsky. Pure Appl. Chem. 79, 293 (2007). (http://dx.doi.org/10.1351/pac200779030293)
  • 49. P. C. DeRose, L. Wang, A. K. Gaigalas, G. W. Kramer, U. Resch-Genger, U. Panne. “Need for and metrological approaches towards standardization of fluorescence measurements from the view of national metrology institutes”, in Standardization and Quality Assurance in Fluorescence Measurements I: Techniques, Vol. 5, U. Resch-Genger (Ed.), O. S. Wolfbeis (Series Ed.), Springer, Berlin (2008).
  • 50. U. Resch-Genger, K. Hoffmann, D. Pfeifer. Simple Instrument Calibration and Validation Standards for Fluorescence Techniques, Reviews in Fluorescence 2007, C. D. Geddes (Ed.), 4, pp. 1–32, Springer Science Businesss Media, New York (2009).
  • 51. J. Hollandt, D. R. Taubert, J. Seidel, U. Resch-Genger, A. Gugg-Helminger, D. Pfeifer, C. Monte. J. Fluoresc. 15, 301 (2005). (http://dx.doi.org/10.1007/s10895-005-2628-x)
  • 52. C. Monte, U. Resch-Genger, D. Pfeifer, R. D. Taubert, J. Hollandt. Metrologia 43, S89 (2006). (http://dx.doi.org/10.1088/0026-1394/43/2/S18)
  • 53. F. Lei, J. Fischer. Metrologia 30, 297 (1993). (http://dx.doi.org/10.1088/0026-1394/30/4/015)
  • 54. D. Bartholomeusz, J. D. Andrade. “Photodetector calibration method for reporting bioluminescence measurements in standardized units”, in Bioluminescence & Chemiluminescence: Progress & Current Applications, Proc. Symposium on Bioluminescence and Chemiluminescence, pp. 189–192, World Scientific Publishing, Singapore (2002).
  • 55. L. Werner, J. Fischer, U. Johannsen, J. Hartmann. Metrologia 37, 279 (2000). (http://dx.doi.org/10.1088/0026-1394/37/4/3)
  • 56. Definition according to VIM (see ref. [57]): Calibration is an operation that, under specified conditions, in a first step, establishes a relation between the quantity values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and, in a second step, uses this information to establish a relation for obtaining a measurement result from an indication.
  • 57a. BIPM. International Vocabulary of Basic and General Terms in Metrology (VIM), 3rd ed. (draft) (2004).
  • 57b. BIPM. International Vocabulary of Basic and General Terms in Metrology (VIM), 2nd ed., Beuth Verlag, Berlin (1994).
  • 57c. BIPM. International Vocabulary of Metrology: Basic and General Concepts and Associated Terms (VIM, JCGM 200: 2008, with 2010 -corrections (in the name of BIPM, IEC, IFCC, ILAC, ISO, IUPAC, OIML), Sevres, <www.bipm.org/en/publications/guides/vim.html>.
  • 58. According to VIM, metrological traceability is the property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty.
  • 59. According to VIM, measurement uncertainty equals a non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information used.
  • 60. R. I. Wielgosz. Anal. Bioanal. Chem. 374, 767 (2003).
  • 61. EURACHEM/CITAC Guide. Traceability in Chemical Measurement, A Guide to Achieving Comparable Results in Chemical Measurement (2003).
  • 62. Comité International des Poids de Mesures. Mutual recognition of national measurement standards and of calibration and measurement certificates issued by national metrology institutes (Technical supplement revised in October 2003) (1999).
  • 63. J. Gran, A. S. Sudbø. Metrologia 41, 204 (2004). (http://dx.doi.org/10.1088/0026-1394/41/3/014)
  • 64. U. Resch-Genger, D. Pfeifer, C. Monte, W. Pilz, A. Hoffmann, M. Spieles, K. Rurack, D. R. Taubert, B. Schönenberger, P. Nording. J. Fluoresc. 15, 315 (2005). (http://dx.doi.org/10.1007/s10895-005-2629-9)
  • 65. J. N. Demas, G. A. Crosby. J. Phys. Chem. 75, 991 (1971).
  • 66. N. Boens, W. Qin, N. Basaric, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefevre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, A. Miura. Anal. Chem. 79, 2137 (2007). (http://dx.doi.org/10.1021/ac062160k)
  • 67. Federal Institute for Materials Research and Testing (BAM). Certificates of analysis, Certified Reference Materials BAM-F001, BAM-F002, BAM-F003, BAM-F004, and BAM-F001 (2006). Spectral fluorescence standard for the determination of the relative spectral responsivity of fluorescence instruments within its emission range. Certification of emission spectra in 1-nm intervals. The corresponding product numbers from Sigma-Aldrich for the ready-made standards are 97003-1KT-F for the Calibration Kit and 72594, 23923, 96158, 74245, and 94053 for BAM-F001, BAM-F002, BAM-F003, BAM-F004, and BAM-F005, respectively.
  • 68. U. Resch-Genger, D. Pfeifer. Certification report, Calibration Kit Spectral Fluorescence Standards BAM-F001–BAM-F005, BAM (2006).
  • 69. National Institute of Standards and Technology (NIST). Certificate of analysis, Standard Reference Materials 2940–2943, Relative intensity correction standard for fluorescence spectroscopy: Orange (SRM 2940) and green emission (SRM 2941) (2007), UV (SRM 2942) and blue emission (SRM 2943) (2009). Certification of emission spectra in 1-nm intervals (<<https://www-s.nist.gov/ srmors/view_detail.cfm?srm=2940>>, <<https://www-s.nist.gov/srmors/view_detail.cfm?srm= 2941>>, <<https://www-s.nist.gov/srmors/view_detail.cfm?srm=2942>>, <https://www‑s.nist. gov/srmors/view_detail.cfm?srm=2943>>) consulted 20 September 2010.
  • 70. National Institute of Standards and Technology (NIST). Certificate of analysis, Standard Reference Material 936a, quinine sulfate dihydrate (1994). (<https://www-s.nist.gov/srmors/ view_detail.cfm?srm=936A>, consulted 20 September 2010).
  • 71. P. Froehlich. Int. Lab. 42 (1989).
  • 72. R. J. Kovach, W. M. Peterson. Am. Lab. 32G (1994).
  • 73. P. C. DeRose, M. V. Smith, K. D. Mielenz, D. H. Blackburn, G. W. Kramer. J. Lumin. 128, 257 (2008). (http://dx.doi.org/10.1016/j.jlumin.2007.08.003)
  • 74. P. C. DeRose, M. V. Smith, K. D. Mielenz, D. H. Blackburn, G. W. Kramer. J. Lumin. 129, 349 (2009). (http://dx.doi.org/10.1016/j.jlumin.2008.10.017)
  • 75. R. B. Thompson, I. Gryczynski, J. Malicka. Biotechniques 32, 34 (2002).
  • 76. U. Resch-Genger, P. DeRose. Characterization of photoluminescence measuring systems (IUPAC Project #2004-021-1-300, <http://www.iupac.org/web/ins/2004-021-1-300>).
  • 77. R. A. Velapoldi. J. Res. Natl. Bur. Stand. 76A, 641 (1972).
  • 78. M. G. White, A. Bittar. Metrologia 30, 361 (1993). (http://dx.doi.org/10.1088/0026-1394/30/4/026)
  • 79. The stringency of the requirement on the spatial uniformity of the scope-specific property or homogeneity of the fluorophore distribution within the matrix is dependent on the spatial resolution of the respective photoluminescence technique with, for example, techniques offering a high spatial resolution such as fluorescence microscopy imposing more severe requirements on homogeneity than steady-state fluorometry.
  • 80. P. C. DeRose, G. W. Kramer. J. Lumin. 113, 314 (2005). (http://dx.doi.org/10.1016/j.jlumin.2004.11.002)
  • 81. International Organization for Standardization (ISO). General Requirements for the Competence of Reference Material Producers, 2nd ed., Geneva (2000, corrigendum 2003).
  • 82. International Organization for Standardization (ISO). Reference Materials—General and Statistical Principles for Certification, Geneva (2006).
  • 83. International Organization for Standardization (ISO). Guide to the Expression of Uncertainty in Measurement, 1st ed., Geneva (1995).
  • 84. European Federation of National Associations of Measurement, Testing and Analytical Laboratories (EUROLAB). Guide to the Evaluation of Measurement Uncertainty for Quantitative Test Results, Technical Report No. 1 (2006).
  • 85. W. May, R. Parris, C. Beck, J. Fassett, R. Greenberg, F. Guenther, G. Kramer, S. Wise, T. Gills, J. Colbert, R. Gettings, B. MacDonald. Definitions of Terms and Modes Used at NIST for Value-assignment of Reference Materials for Chemical Measurements, NIST Special Publication 260-136, U.S. Government Printing Office, Washington, DC (2000).
  • 86. Federal Institute for Materials Research and Testing (BAM). Guidelines for the Production of BAM Reference Materials (2006).
  • 87. ASTM E 826-85. “Standard practice for testing homogeneity of materials for development of reference materials”, in Annual Book of ASTM Standards, Vol. 03.06 (1996, original version 1985).
  • 88. W. H. Melhuish. Pure Appl. Chem. 56, 231 (1984). (http://dx.doi.org/10.1351/pac198456020231)
  • 89. L. F. Costa, K. D. Mielenz, F. Grum. In Optical Radiation Measurements, Vol. 3, Measurements of Photoluminescence, K. D. Mielenz (Ed.), pp. 139–174, Academic Press, New York (1982).
  • 90. K. D. Mielenz. Appl. Opt. 17, 2875 (1978). (http://dx.doi.org/10.1364/AO.17.002875)
  • 91. In a few previous publications, corrected spectra have also been called technical spectra, see ref. [8].
  • 92. K. Hoffmann, C. Monte, D. Pfeifer, U. Resch-Genger. GIT Lab. J. 29 (2005).
  • 93. C. J. Sansonetti, M. L. Salit, J. Reader. Appl. Opt. 35, 74 (1996). (http://dx.doi.org/10.1364/AO.35.000074)
  • 94. National Institute of Standards and Technology (NIST). Handbook of Basic Atomic Spectroscopic Data, Gaithersburg, MD, <http://www.physics.nist.gov/PhysRefData/Handbook/index.html>, consulted 9 July 2009.
  • 95. G. R. Harrison. MIT Wavelength Tables, Vol. 2, Wavelengths by Element, MIT Press, Cambridge, MA (1982).
  • 96. A. N. Zaidel, V. K. Prokofev, S. M. Raiskii, V. A. Slavnyi, E. Y. Shreider. Tables of Spectral Lines, Plenum Press, New York (1970).
  • 97. Calibration light source CAL-2000, MIKROPACK GmbH (<http://www.mikropack.de>, consulted 9 July 2009) or Ocean Optics Inc. (<http://www.oceanoptics.com>, consulted 9 July 2009).
  • 98. I. T. Lifshitz, M. L. Meilman. Sov. J. Opt. Technol. 55, 487 (1989).
  • 99. Photon Technology International (DYAG) FA-2036.
  • 100. K. Hoffmann, U. Resch-Genger, R. Nitschke. GIT Imaging Microsc. 18 (2005).
  • 101. K. Hoffmann, K. C. Monte, D. Pfeifer, U. Resch-Genger. GIT Lab. J. 29 (2005).
  • 102. For materials like the fluorescent glasses shown in Fig. 2 (panel B) containing a multitude of luminescent rare earth (RE) ions that differ in their spectroscopic properties including their luminescence lifetimes which are in the upper micro- to millisecond range, the standard’s emission spectrum is affected by excitation wavelength. The intensity ratio of the emission bands resulting from different species can be influenced by parameters like delay, gate, and integration (or scanning) time for measurements with pulsed light sources. This, however, does not limit its suitability as a wavelength standard.
  • 103. D. Pfeifer, K. Hoffmann, A. Hoffmann, C. Monte, U. Resch-Genger. J. Fluoresc. 16, 581 (2006). (http://dx.doi.org/10.1007/s10895-006-0086-8)
  • 104. R. A. Velapoldi, K. D. Mielenz. A Fluorescence Standard Reference Material: Quinine Sulfate Dihydrate, NBS Special Publication 260-64, PB 80132046, National Bureau of Standards, Springfield, VA (1980).
  • 105. N. P. Fox. Metrologia 28, 197 (1991). (http://dx.doi.org/10.1088/0026-1394/28/3/018)
  • 106. Typically, quantum counters are highly concentrated dye solutions that transform absorbed photons with an excitation wavelength-independent constant quantum yield into emitted photons. Such materials are prone to concentration, polarization, and geometry effects resulting in enhanced calibration uncertainties. However, quantum counters can be also physical devices, see ref. [48].
  • 107. W. H. Melhuish. Appl. Opt. 14, 26 (1975).
  • 108. S. J. Hart, P. J. Jones. Appl. Spectrosc. 55, 1717 (2001). (http://dx.doi.org/10.1366/0003702011954071)
  • 109. An actinometer exploits the wavelength-independent quantum yield of a photochemical reaction, yielding a measurable and well-characterized product.
  • 110. K. D. Mielenz, R. A. Velapoldi, R. Mavrodineanu. Standardization in Spectrophometry and Luminescence Measurements, NBS Special Publication 466, National Bureau of Standards, Gaithersburg, MD (1977).
  • 111. H. J. Kuhn, S. E. Braslavsky, R. Schmidt. Pure Appl. Chem. 76, 2105 (2004). (http://dx.doi.org/10.1351/pac200476122105)
  • 112. U. Resch-Genger, D. Pfeifer, K. Hoffmann, G. Flachenecker, A. Hoffmann, C. Monte. “Linking fluorometry to radiometry with physical and chemical transfer standards: Instrument characterization and traceable fluorescence measurements”, in Standardization and Quality Assurance in Fluorescence Measurements I: Techniques, Vol. 5, U. Resch-Genger (Ed.), O. S. Wolfbeis (Series Ed.), Springer, Berlin (2008).
  • 113. J. W. Eastman. Appl. Opt. 5, 1125 (1966). (http://dx.doi.org/10.1364/AO.5.001125)
  • 114. S. A. Wise, L. C. Sander, W. E. May. J. Chromatogr. 642, 329 (1993). (http://dx.doi.org/10.1016/0021-9673(93)80097-R)
  • 115. A. Schwartz, A. K. Gaigalas, L. Wang, G. E. Marti, R. F. Vogt, E. Fernandez-Repollet. Cytometry 57B, 1 (2004). (http://dx.doi.org/10.1002/cyto.b.10066)
  • 116. National Institute of Standards and Technology (NIST). Report of Investigation, Reference Material 8640, Microspheres with immobilized, fluorescein isothiocyanate, Gaithersburg, MD (2005). <https://www-s.nist.gov/srmors/view_detail.cfm?srm=8640>, consulted 20 September 2010.
  • 117. K. Rurack. “Fluorescence quantum yields—methods of determination and standards”, in Standardization in Fluorometry: State-of-the Art and Future Challenges, in Standardization and Quality Assurance in Fluorescence Measurements I: Techniques, Vol. 5, U. Resch-Genger (Ed.), O. S. Wolfbeis, (Series Ed.), Springer, Berlin (2008).
  • 118. D. Magde, R. Wong, P. G. Seybold. Photochem. Photobiol. 75, 327 (2002). (http://dx.doi.org/10.1562/0031-8655(2002)075<0327:FQYATR>2.0.CO;2)
  • 119. L. Porrès, A. Holland, L.-O. Pålsson, A. P. Monkman, C. Kemp, A. Beeby. J. Fluoresc. 16, 267 (2006). (http://dx.doi.org/10.1007/s10895-005-0054-8)
  • 120. J. N. Demas, G. A. Crosby. J. Phys. Chem. A 75, 991 (1971).
  • 121. M. Grabolle, M. Spieles, N. Gaponik, V. Lesnyak, A. Eychmüller, U. Resch-Genger. Anal. Chem. 81, 6285 (2009). (http://dx.doi.org/10.1021/ac900308v)
  • 122. A. N. Fletcher. Photochem. Photobiol. 9, 439 (1969). (http://dx.doi.org/10.1111/j.1751-1097.1969.tb07311.x)
  • 123. W. H. Melhuish. J. Phys. Chem. 65, 229 (1965). (http://dx.doi.org/10.1021/j100820a009)
  • 124. A.-S. Chauvin, F. Gumy, D. Imbert, J.-C. Bünzli. Spectrosc. Lett. 37, 517 (2004). (http://dx.doi.org/10.1081/SL-120039700)
  • 125. R. F. Kubin, A. N. Fletcher. J. Lumin. 27, 455 (1982). (http://dx.doi.org/10.1016/0022-2313(82)90045-X)
  • 126. R. C. Benson, H. A. Kues. J. Chem. Eng. Data. 22, 379 (1977). (http://dx.doi.org/10.1021/je60075a020)
  • 127. J. R. Lakowicz, I. Gryczynski, G. Laczko, D. Gloyna. J. Fluoresc. 1, 87 (1991). (http://dx.doi.org/10.1007/BF00865204)
  • 128. R. F. Chen. Anal. Biochem. 57, 593 (1974). (http://dx.doi.org/10.1016/0003-2697(74)90115-8)
  • 129. R. B. Thompson, E. Gratton. Anal. Chem. 60, 670 (1988). (http://dx.doi.org/10.1021/ac00158a014)
  • 130. M. Maroncelli, G. R. Fleming. J. Chem. Phys. 86, 6221 (1987). (http://dx.doi.org/10.1063/1.452460)
  • 131. K. Hoffmann, U. Resch-Genger, R. Nitschke. “Comparability of fluorescence microscopy data and need for instrument characterization of spectral scanning microscopes”, in Standardization and Quality Assurance in Fluorescence Measurements II: Bioanalytical and Biomedical Applications, Vol. 6, U. Resch-Genger (Ed.), O. S. Wolfbeis (Series Ed.), Springer, Berlin (2008).