Pure Appl. Chem., 2009, Vol. 81, No. 9, pp. 1615-1634
http://dx.doi.org/10.1351/PAC-CON-08-11-11
Published online 2009-08-26
Fluorescence of oligonucleotides adsorbed onto the thermoresponsive poly(isopropyl acrylamide) shell of polymer nanoparticles: Application to bioassays
References
- 1. B. Valeur. Molecular Fluorescence: Principles and Applications, Wiley-VCH, New York (2001).
- 2. J. Lacowitz. Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic, Dordrecht (1999).
- 3. I. Z. Steinber, E. Hass, E. Katchalsi. "Long-range nonradiative transfer of electronic excitation energy", in Time-Resolved Spectroscopy in Biochemistry and Biology, S. St. Andrews (Ed.), Plenum, New York (1983).
- 4. P. S. Eis, J. R. Lakowicz. Biochemistry 32, 7981 (1993). (http://dx.doi.org/10.1021/bi00082a020)
- 5. B. P. Maliwal, J. R. Lakowicz, G. Kupryszewski, P. Rekowski. Biochemistry 32, 12337 (1993). (http://dx.doi.org/10.1021/bi00097a009)
- 6. K. M. Parkhurst, L. J. Parkhurst. Biochemistry 34, 293 (1995). (http://dx.doi.org/10.1021/bi00001a036)
- 7. J. P. S. Farinha, J. M. G. Martinho. J. Phys. Chem. C 112, 10591 (2008). (http://dx.doi.org/10.1021/jp8016437)
- 8. J. M. G. Martinho, K. Sienicki, D. Blue, M. A. Winnik. J. Am. Chem. Soc. 110, 7773 (1988). (http://dx.doi.org/10.1021/ja00231a030)
- 9. J. M. G. Martinho, M. A. Winnik. Macromolecules 19, 2281 (1986). (http://dx.doi.org/10.1021/ma00162a029)
- 10. S. Nayak, L. A. Lyon. Angew. Chem., Int. Ed. 44, 7686 (2005). (http://dx.doi.org/10.1002/anie.200501321)
- 11. C. Pichot. Curr. Opin. Colloids Interface Sci. 9, 2132 (2004). (http://dx.doi.org/10.1016/j.cocis.2004.07.001)
- 12. K. Kawaguchi. Prog. Polym. Sci. 25, 1171 (2000). (http://dx.doi.org/10.1016/S0079-6700(00)00024-1)
- 13. A. Elaissari. Prog. Colloid Polym. Sci. 133, 9 (2006). (http://dx.doi.org/10.1007/3-540-32702-9_2)
- 14. A. Kumar, A. Srivastava, I. Y. Galaev, B. Mattiasson. Prog. Polym. Sci. 32, 534 (2007). (http://dx.doi.org/10.1016/j.progpolymsci.2007.05.003)
- 15. Z. M. O. Rzaev, S. Dincer, E. Piskin. Prog. Polym. Sci. 32, 1205 (2007). (http://dx.doi.org/10.1016/j.progpolymsci.2007.01.006)
- 16. A. M. Santos, A. Elaissari, J. M. G. Martinho, C. Pichot. Polymer 46, 1181 (2005). (http://dx.doi.org/10.1016/j.polymer.2004.11.069)
- 17. T. J. V. Prazeres, A. M. Santos, J. M. G. Martinho, A. Elaissari, C. Pichot. Langmuir 20, 6834 (2004). (http://dx.doi.org/10.1021/la049609u)
- 18. T. J. V. Prazeres, A. Fedorov, J. M. G. Martinho. J. Phys. Chem. B 108, 9032 (2004). (http://dx.doi.org/10.1021/jp0489931)
- 19. T. J. V. Prazeres, J. P. S. Farinha, J. M. G. Martinho. J. Phys. Chem. C 112, 16331 (2008). (http://dx.doi.org/10.1021/jp804747b)
- 20. A. A. Dar, G. M. Rather, A. R. Das. J. Phys. Chem. B 111, 3122 (2007). (http://dx.doi.org/10.1021/jp066926w)
- 21. J. P. S. Farinha, J. G. Spiro, M. A. Winnik. J. Phys. Chem. B 105, 4879 (2001). (http://dx.doi.org/10.1021/jp002345+)
- 22. J. P. S. Farinha, J. M. G. Martinho, L. Pogliani. J. Math. Chem. 21, 131 (1997). (http://dx.doi.org/10.1023/A:1019114217567)
- 23. E. S. Gil, S. A. Hudson. Prog. Polym. Sci. 29, 1173 (2004). (http://dx.doi.org/10.1016/j.progpolymsci.2004.08.003)
- 24. F. M. Winnik. Macromolecules 23, 1647 (1990). (http://dx.doi.org/10.1021/ma00208a014)
- 25. H. G. Schild, D. A. Tirrell. J. Phys. Chem. 94, 4352 (1990). (http://dx.doi.org/10.1021/j100373a088)
- 26. S. Fujishige, K. Kubota, I. Ando. J. Phys. Chem. 93, 3311 (1989). (http://dx.doi.org/10.1021/j100345a085)
- 27. X. Wang, X. Qui, C. Wu. Macromolecules 31, 2972 (1998). (http://dx.doi.org/10.1021/ma971873p)
- 28. T. Karstens, K. Kobs. J. Phys. Chem. 84, 1871 (1980). (http://dx.doi.org/10.1021/j100451a030)
- 29. J. Karpiuk, Z. R. Grabowski, F. C. DeSchryver. J. Phys. Chem. 98, 3247 (1994). (http://dx.doi.org/10.1021/j100064a001)
- 30. D. Magde, G. E. Rojas, P. G. Seybold. Photochem. Photobiol. 70, 737 (1999). (http://dx.doi.org/10.1111/j.1751-1097.1999.tb08277.x)
- 31. S. J. Strickler, R. A. Berg. J. Chem. Phys. 37, 814 (1962). (http://dx.doi.org/10.1063/1.1733166)
- 32. Handbook of Chemistry and Physics, 78th ed., CRC Press, New York (1997).
- 33. J. Gao, C. Wu. Macromolecules 30, 6873 (1997). (http://dx.doi.org/10.1021/ma9703517)
- 34. M. J. Harley, D. Toptygin, T. Troxler, J. F. Schildbach. Biochemistry 41, 6460 (2002). (http://dx.doi.org/10.1021/bi011969i)
- 35. K. Kinosita, S. Kawato, A. Ikegami. Biophys. J. 20, 289 (1977). (http://dx.doi.org/10.1016/S0006-3495(77)85550-1)
- 36. G. Lipari, A. Szabo. Biophys. J. 30, 489 (1980). (http://dx.doi.org/10.1016/S0006-3495(80)85109-5)
- 37. G. B. Dutt. J. Phys. Chem. B 106, 7398 (2002). (http://dx.doi.org/10.1021/jp0203447)
- 38. T. J. V. Prazeres, A. Fedorov, S. P. Barbosa, J. M. G. Martinho, M. N. Berberan-Santos. J. Phys. Chem. A 112, 5034 (2008). (http://dx.doi.org/10.1021/jp710625j)
- 39. T. Forster. Ann. Phys. (Leipzig) 2, 55 (1948).
- 40. T. Forster. Z. Naturforsch., A: Phys. Sci. 4, 321 (1949).
- 41. (a) J. P. S. Farinha, K. Schillen, M. A. Winnik. J. Phys. Chem. B 103, 2487 (1999); (http://dx.doi.org/10.1021/jp9843858)
- 41. (b) J. P. S. Farinha, J. M. G. Martinho, S. Kawaguchi, A. Yekta, M. A. Winnik. J. Phys. Chem. 100, 12552 (1996). (http://dx.doi.org/10.1021/jp960236i)
- 42. E. Helfand, Y. Tagami. J. Chem. Phys. 56, 3592 (1972). (http://dx.doi.org/10.1063/1.1677735)
- 43. J. P. S. Farinha, M. T. Charreyre, J. M. G. Martinho, M. A. Winnik, C. Pichot. Langmuir 17, 2617 (2001). (http://dx.doi.org/10.1021/la001338+)