CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2009, Vol. 81, No. 8, pp. 1499-1509

Published online 2009-07-24

Comparisons of structural iron reduction in smectites by bacteria and dithionite: II. A variable-temperature Mössbauer spectroscopic study of Garfield nontronite

Fabiana R. Ribeiro1, José D. Fabris2, Joel E. Kostka3, Peter Komadel4 and Joseph W. Stucki1*

1 Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
2 Department of Chemistry, Federal University of Minas Gerais – Campus Pampulha, Belo Horizonte, MG, Brazil
3 Department of Oceanography, Florida State University, Tallahassee, FL 32306, USA
4 Institute of Inorganic Chemistry , Slovak Academy of Sciences, SK-845 36 Bratislava, Slovakia

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Luan Fubo, Gorski Christopher A., Burgos William D.: Thermodynamic Controls on the Microbial Reduction of Iron-Bearing Nontronite and Uranium. Environ. Sci. Technol. 2014, 48, 2750. <>
  • Liu Deng, Dong Hailiang, Zhao Linduo, Wang Hongmei: Smectite Reduction by Shewanella Species as Facilitated by Cystine and Cysteine. Geomicrobiology Journal 2014, 31, 53. <>
  • Fox Patricia M., Davis James A., Kukkadapu Ravi, Singer David M., Bargar John, Williams Kenneth H.: Abiotic U(VI) reduction by sorbed Fe(II) on natural sediments. Geochimica et Cosmochimica Acta 2013, 117, 266. <>
  • Neumann Anke, Olson Tyler L., Scherer Michelle M.: Spectroscopic Evidence for Fe(II)–Fe(III) Electron Transfer at Clay Mineral Edge and Basal Sites. Environ. Sci. Technol. 2013, 130321155048009. <>
  • Gorski Christopher A., Klüpfel Laura E., Voegelin Andreas, Sander Michael, Hofstetter Thomas B.: Redox Properties of Structural Fe in Clay Minerals: 3. Relationships between Smectite Redox and Structural Properties. Environ. Sci. Technol. 2013, 47, 13477. <>
  • Alexandrov Vitaly, Rosso Kevin M.: Insights into the Mechanism of Fe(II) Adsorption and Oxidation at Fe–Clay Mineral Surfaces from First-Principles Calculations. J. Phys. Chem. C 2013, 117, 22880. <>
  • Yang Junjie, Kukkadapu Ravi K., Dong Hailiang, Shelobolina Evgenya S., Zhang Jing, Kim Jinwook: Effects of redox cycling of iron in nontronite on reduction of technetium. Chem Geol 2012, 291, 206. <>
  • Peretyazhko T.S., Zachara J.M., Kukkadapu R.K., Heald S.M., Kutnyakov I.V., Resch C.T., Arey B.W., Wang C.M., Kovarik L., Phillips J.L., Moore D.A.: Pertechnetate (TcO4−) reduction by reactive ferrous iron forms in naturally anoxic, redox transition zone sediments from the Hanford Site, USA. Geochimica et Cosmochimica Acta 2012, 92, 48. <>
  • Gorski Christopher A., Klüpfel Laura, Voegelin Andreas, Sander Michael, Hofstetter Thomas B.: Redox Properties of Structural Fe in Clay Minerals. 2. Electrochemical and Spectroscopic Characterization of Electron Transfer Irreversibility in Ferruginous Smectite, SWa-1. Environ. Sci. Technol. 2012, 46, 9369. <>
  • LIU D., DONG H., BISHOP M. E., ZHANG J., WANG H., XIE S., WANG S., HUANG L., EBERL D. D.: Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium : Bioreduction of structural iron in clay minerals by a SRB. Geobiol 2012, 10, 150. <>
  • Stucki Joseph W.: A review of the effects of iron redox cycles on smectite properties. C R Geosci 2011, 343, 199. <>
  • Neumann Anke, Petit Sabine, Hofstetter Thomas B.: Evaluation of redox-active iron sites in smectites using middle and near infrared spectroscopy. Geochimica et Cosmochimica Acta 2011, 75, 2336. <>
  • Bishop Michael E., Dong Hailiang, Kukkadapu Ravi K., Liu Chongxuan, Edelmann Richard E.: Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99). Geoch Cosmo Acta 2011, 75, 5229. <>