Pure Appl. Chem., 2009, Vol. 81, No. 7, pp. 1229-1239
http://dx.doi.org/10.1351/PAC-CON-08-10-19
Published online 2009-06-29
Vanadium haloperoxidases as supramolecular hosts: Synthetic and computational models
References
- 1. D. C. Crans, J. J. Smee, E. Gaidamauskas, L. Yang. Chem. Rev. 104, 849 (2004). (http://dx.doi.org/10.1021/cr020607t)
- 2. (a) H. Sigel, A. E. Sigel (Eds.). Vanadium and its Role in Life, Vol. 31 of Metal Ions in Biological Systems, Marcel Dekker, New York (1995);
- 2. (b) K. H. Thompson, J. H. McNeill, C. Orvig. Chem. Rev. 99, 2561 (1999); (http://dx.doi.org/10.1021/cr980427c)
- 2. (c) K. Kustin, J. Costa Pessoa, D. C. Crans (Eds.). Vanadium: The Versatile Metal, ACS Symposium Series No. 974, American Chemical Society, Washington, DC (2007).
- 3. W. Plass. Angew. Chem., Int. Ed. 38, 909 (1999). (http://dx.doi.org/10.1002/(SICI)1521-3773(19990401)38:7<909::AID-ANIE909>3.0.CO;2-S)
- 4. W. Plass. Coord. Chem. Rev. 237, 205 (2003). (http://dx.doi.org/10.1016/S0010-8545(02)00228-X)
- 5. H. Vilter. Phytochemistry 23, 1387 (1984). (http://dx.doi.org/10.1016/S0031-9422(00)80471-9)
- 6. A. Messerschmidt, R. Wever. Proc. Natl. Acad. Sci. USA 93, 392 (1996). (http://dx.doi.org/10.1073/pnas.93.1.392)
- 7. M. Weyand, H. J. Hecht, M. Kiess, M. F. Liaud, H. Vilter, D. Schomburg. J. Mol. Biol. 293, 595 (1999). (http://dx.doi.org/10.1006/jmbi.1999.3179)
- 8. M. N. Isupov, A. R. Dalby, A. A. Brindley, Y. Izumi, T. Tanabe, G. N. Murshudov, J. A. Littlechild. J. Mol. Biol. 299, 1035 (2000). (http://dx.doi.org/10.1006/jmbi.2000.3806)
- 9. A. Messerschmidt, R. Wever. Inorg. Chim. Acta 273, 160 (1998). (http://dx.doi.org/10.1016/S0020-1693(97)05919-7)
- 10. (a) G. W. Gribble. Acc. Chem. Res. 31, 141 (1998); (http://dx.doi.org/10.1021/ar9701777)
- 10. (b) R. Wever, W. Hemrika. In Handbook of Metalloproteins, Vol. 2, A. Messerschmidt, R. Huber, T. Poulos, K. Wieghardt (Eds.), pp. 14171428, John Wiley, Chichester (2001).
- 11. (a) M. Andersson, A. Willetts, S. Allenmark. J. Org. Chem. 62, 8455 (1997); (http://dx.doi.org/10.1021/jo9712456)
- 11. (b) H. B. ten Brink, H. E. Schoemaker, R. Wever. Eur. J. Biochem. 268, 132 (2001). (http://dx.doi.org/10.1046/j.1432-1327.2001.01856.x)
- 12. (a) R. Renirie, W. Hemrika, S. R. Piersma, R. Wever. Biochemistry 39, 1133 (2000); (http://dx.doi.org/10.1021/bi9921790)
- 12. (b) C. Kimblin, X. H. Bu, A. Butler. Inorg. Chem. 41, 161 (2002); (http://dx.doi.org/10.1021/ic010892j)
- 12. (c) N. Tanaka, Z. Hasan, R. Wever. Inorg. Chim. Acta 356, 288 (2003). (http://dx.doi.org/10.1016/S0020-1693(03)00476-6)
- 13. Z. Hasan, R. Renirie, R. Kerkman, H. J. Ruijssenaars, A. F. Hartog, R. Wever. J. Biol. Chem. 281, 9738 (2006). (http://dx.doi.org/10.1074/jbc.M512166200)
- 14. M. Bangesh, W. Plass. J. Mol. Struct. Theochem. 725, 163 (2005). (http://dx.doi.org/10.1016/j.theochem.2005.03.034)
- 15. (a) J. Y. Kravitz, V. L. Pecoraro. Pure Appl. Chem. 77, 1595 (2005); (http://dx.doi.org/10.1351/pac200577091595)
- 15. (b) C. Schneider, G. Zampella, L. De Gioa, V. L. Pecoraro. In Vanadium: The Versatile Metal, ACS Symposium Series No. 974, K. Kustin, J. Costa Pessoa, D. C. Crans (Eds.), p. 148, American Chemical Society, Washington, DC (2007).
- 16. W. Plass, M. Bangesh, S. Nica, A. Buchholz. In Vanadium: The Versatile Metal, ACS Symposium Series No. 974, K. Kustin, J. Costa Pessoa, D. C. Crans (Eds.), p. 163, American Chemical Society, Washington, DC (2007).
- 17. S. Raugei, P. Carloni. J. Phys. Chem. B 110, 3747 (2006). (http://dx.doi.org/10.1021/jp054901b)
- 18. J. Littlechild, E. Garcia-Rodriguez, E. Coupe, A. Watts, M. Isupov. In Vanadium: The Versatile Metal, ACS Symposium Series No. 974, K. Kustin, J. Costa Pessoa, D. C. Crans (Eds.), p. 136, American Chemical Society, Washington, DC (2007).
- 19. M. J. Clague, A. Butler. J. Am. Chem. Soc. 117, 3415 (1995). (http://dx.doi.org/10.1021/ja00117a016)
- 20. (a) V. Conte, F. Di Furia, S. Moro. J. Phys. Org. Chem. 9, 329 (1996); (http://dx.doi.org/10.1002/(SICI)1099-1395(199606)9:6<329::AID-POC789>3.0.CO;2-Y)
- 20. (b) G. E. Meister, A. Butler. Inorg. Chem. 33, 3269 (1994); (http://dx.doi.org/10.1021/ic00093a013)
- 20. (c) A. F. Ghiron, R. C. Thompson. Inorg. Chem. 29, 4457 (1990). (http://dx.doi.org/10.1021/ic00347a025)
- 21. A. Butler, A. H. Baldwin. Struct. Bonding 89, 109 (1997).
- 22. K. Ishikawa, Y. Mihara, K. Gondoh, E. Suzuki, Y. Asano. EMBO J. 19, 2412 (2000). (http://dx.doi.org/10.1093/emboj/19.11.2412)
- 23. (a) W. Plass, A. Pohlmann, H.-P. Yozgatli. J. Inorg. Biochem. 80, 181 (2000); (http://dx.doi.org/10.1016/S0162-0134(00)00029-5)
- 23. (b) W. Plass, H. P. Yozgatli. Z. Anorg. Allg. Chem. 629, 65 (2003). (http://dx.doi.org/10.1002/zaac.200390018)
- 24. (a) A. Pohlmann, W. Plass. J. Inorg. Biochem. 86, 381 (2001); (http://dx.doi.org/10.1016/S0162-0134(01)00285-9)
- 24. (b) S. Nica, A. Pohlmann, W. Plass. Eur. J. Inorg. Chem. 2032 (2005); (http://dx.doi.org/10.1002/ejic.200401060)
- 24. (c) A. Pohlmann, S. Nica, T. K. K. Luong, W. Plass. Inorg. Chem. Commun. 8, 289 (2005); (http://dx.doi.org/10.1016/j.inoche.2004.12.028)
- 24. (d) S. Nica, M. Rudolph, H. Gorls, W. Plass. Inorg. Chim. Acta 360, 1743 (2007); (http://dx.doi.org/10.1016/j.ica.2006.09.018)
- 24. (e) S. Nica, A. Buchholz, M. Rudolph, A. Schweitzer, M. Wachtler, H. Breitzke, G. Buntkowsky, W. Plass. Eur. J. Inorg. Chem. 2350 (2008). (http://dx.doi.org/10.1002/ejic.200800063)
- 25. J. Becher, I. Seidel, W. Plass, D. Klemm. Tetrahedron 62, 5675 (2006). (http://dx.doi.org/10.1016/j.tet.2006.03.094)
- 26. I. Lippold, H. Gorls, W. Plass. Eur. J. Inorg. Chem. 1487 (2007). (http://dx.doi.org/10.1002/ejic.200601225)
- 27. (a) W. Plass. Z. Anorg. Allg. Chem. 623, 461 (1997); (http://dx.doi.org/10.1002/zaac.19976230174)
- 27. (b) W. Plass. Eur. J. Inorg. Chem. 799 (1998). (http://dx.doi.org/10.1002/(SICI)1099-0682(199806)1998:6<799::AID-EJIC799>3.0.CO;2-V)
- 28. A. Messerschmidt, L. Prade, R. Wever. Biol. Chem. 378, 309 (1997).
- 29. M. Mancka, W. Plass. Inorg. Chem. Commun. 10, 677 (2007). (http://dx.doi.org/10.1016/j.inoche.2007.02.029)
- 30. I. Lippold, J. Becher, D. Klemm, W. Plass. J. Mol. Catal. A: Chem. 299, 12 (2008). (http://dx.doi.org/10.1016/j.molcata.2008.10.005)
- 31. I. Lippold, K. Vlay, H. Gorls, W. Plass. J. Inorg. Biochem. 103, 480 (2009). (http://dx.doi.org/10.1016/j.jinorgbio.2008.12.014)
- 32. (a) V. Conte, O. Bortolini, S. Carraro, S. Moro. J. Inorg. Biochem. 80, 41 (2000); (http://dx.doi.org/10.1016/S0162-0134(00)00038-6)
- 32. (b) O. Bortolini, M. Carraro, V. Conte, S. Moro. Eur. J. Biochem. 42 (2003).
- 33. G. Zampella, J. Y. Kravitz, C. E. Webster, P. Fantucci, M. B. Hall, H. A. Carlson, V. L. Pecoraro, L. De Gioia. Inorg. Chem. 43, 4127 (2004). (http://dx.doi.org/10.1021/ic0353256)
- 34. G. Zampella, P. Fantucci, V. L. Pecoraro, L. De Gioia. J. Am. Chem. Soc. 127, 953 (2005). (http://dx.doi.org/10.1021/ja046016x)
- 35. J. Y. Kravitz, V. L. Pecoraro, H. A. Carlson. J. Chem. Theory Comput. 1, 1265 (2005). (http://dx.doi.org/10.1021/ct050132o)
- 36. Y. Zhang, J. A. Gascon. J. Inorg. Biochem. 102, 1684 (2008). (http://dx.doi.org/10.1016/j.jinorgbio.2008.04.006)
- 37. M. P. Waller, M. Buhl, K. R. Geethalakshmi, D. Wang, W. Thiel. Chem.Eur. J. 13, 4723 (2007). (http://dx.doi.org/10.1002/chem.200700295)
- 38. D. Geibig, R. Wilcken, M. Bangesh, W. Plass. NIC Series 39, 71 (2008).