Pure Appl. Chem., 2009, Vol. 81, No. 4, pp. 719-729
http://dx.doi.org/10.1351/PAC-CON-08-09-18
Design of carborane molecular architectures with electronic structure computations: From endohedral and polyradical systems to multidimensional networks
References
- 1. Clusters of atoms including hydrogen, boron, and carbon: in this work we include clusters of atoms CxByHz with (quasi) icosahedral symmetry.
- 2. R. N. Grimes. Carboranes, Academic Press, New York (1970).
- 3. J. Casanova. The Borane, Carborane, Carbocation Continuum, John Wiley, New York (1998).
- 4. V. I. Bregadze. Chem. Rev. 92, 209 (1992). (http://dx.doi.org/10.1021/cr00010a002)
- 5. L. A. Leites. Chem. Rev. 92, 279 (1992). (http://dx.doi.org/10.1021/cr00010a006)
- 6. I. V. Glukhov, K. A. Lyssenko, A. A. Korlyukov, M. Y. Antipin. Faraday Discuss. 135, 203 (2007). (http://dx.doi.org/10.1039/b605811f)
- 7. J. M. Oliva, N. L. Allan, P. v. R. Schleyer, C. Vinas, F. Teixidor. J. Am. Chem. Soc. 127, 13538 (2005).
- 8. G. Brownell, R. G. Zamenhof, B. W. Murray, G. R. Wellum. "Boron neutron capture therapy", in Therapy in Nuclear Medicine, R. P. Spencer (Ed.), Grune and Stratton, New York (1978).
- 9. M. F. Hawthorne, A. Maderna. Chem. Rev. 99, 3421 (1999). (http://dx.doi.org/10.1021/cr980442h)
- 10. A. H. Soloway, W. Tjarks, A. Barnum, F.-G. Rong, R. F. Barth, I. M. Codogni, J. G. Wilson. Chem. Rev. 98, 1515 (1998). (http://dx.doi.org/10.1021/cr941195u)
- 11. J. F. Valliant, K. J. Guenther, A. S. King, P. Morel, P. Schaffer, O. O. Sogbein, K. A. Stephenson. Coord. Chem. Rev. 232, 173 (2002). (http://dx.doi.org/10.1016/S0010-8545(02)00087-5)
- 12. M. F. Hawthorne, M. W. Lee. J. Neuro-Oncol. 62, 33 (2003).
- 13. I. B. Sivaev, V. I. Bregadze, N. T. Kuznetsov. Russ. Chem. Bull., Int. Ed. 51, 1362 (2002).
- 14. W. Tjarks. J. Organomet. Chem. 37, 614 (2000).
- 15. J. Plesek. Chem. Rev. 92, 269 (1992). (http://dx.doi.org/10.1021/cr00010a005)
- 16. N. Zine, J. Bausells, A. Ivorra, J. Aguilo, M. Zabala, F. Teixidor, C. Masalles, C. Vinas, A. Errachid. Sens. Actuators, B 91, 76 (2003). (http://dx.doi.org/10.1016/S0925-4005(03)00069-8)
- 17. B. Gruner, J. Plesek, J. Baca, I. Cisarova, J.-F. Dozol, H. Roquette, C Vinas, P. Selucky, J. Rais. New J. Chem. 26, 1519 (2002). (http://dx.doi.org/10.1039/b202374c)
- 18. O. I. Buzhinsky, V. G. Ostroshchenko, D. G. Whyte, M. Baldwin, R. W. Conn, R. P. Doerner, R. Seraydarian, S. Luckhardt, H. Kugel, W. P. West. J. Nucl. Mater. 313, 214 (2003) (http://dx.doi.org/10.1016/S0022-3115(02)01482-4)
- 19. D. Tafalla, F. L. Tabares. Vacuum 67, 393 (2002). (http://dx.doi.org/10.1016/S0042-207X(02)00211-7)
- 20. Chem. Rev. 94 (1994), special issue, and references therein.
- 21. P. R. Prasad, D. J. Williams. Introduction to Nonlinear Optical Effects in Molecules and Polymers, John Wiley, New York (1991).
- 22. R. Hamasaki, M. Ito, M. Lamrani, M. Mitsuishi, T. Myashita, Y. Yamamoto. J. Mater. Chem. 13, 21 (2003). (http://dx.doi.org/10.1039/b205258j)
- 23. F. Fabrizi di Biani, M. Fontani, E. Ruiz, P. Zanello, J. M. Russell, R. N. Grimes. Organometallics 21, 4129 (2002). (http://dx.doi.org/10.1021/om0201617)
- 24. D.-H. Kim, J. H. Won, S.-J. Kim, J. Ko, S. H. Kim, S. Cho, S. O. Kang. Organometallics 20, 4298 (2001). (http://dx.doi.org/10.1021/om010297p)
- 25. C. De Rosa, P. Corradini, A. Buono, F. Auriemma, A. Grassi, P. Altamura. Macromolecules 36, 3789 (2003). (http://dx.doi.org/10.1021/ma030040y)
- 26. H. Shen, H. S. Chan, Z. W. Xie. Organometallics 27, 5309 (2008). (http://dx.doi.org/10.1021/om8006344)
- 27. P. J. Collings. Liquid Crystals, 2nd ed., Princeton University Press, Princeton, NJ (2001).
- 28. E. Bakker, P. Buhlmann, E. Pretsch. Chem. Rev. 97, 3083 (1997). (http://dx.doi.org/10.1021/cr940394a)
- 29. S. Peper, Y. Qin, P. Almond, M. McKee, M. Telting-Diaz, T. Albrecht-Schmitt, E. Bakker. Anal. Chem. 75, 2131 (2003). (http://dx.doi.org/10.1021/ac026056o)
- 30. M. Krondak, R. Volf, V. Kral. Collect. Czech. Chem. Commun. 66, 1659 (2001). (http://dx.doi.org/10.1135/cccc20011659)
- 31. J. de Zeeuv, J. Luong. Trends Anal. Chem. 21, 594 (2002). (http://dx.doi.org/10.1016/S0165-9936(02)00809-9)
- 32. F. Teixidor, C. Vinas, A. Demonceau, R. Nunez. Pure Appl. Chem. 75, 1305 (2003). (http://dx.doi.org/10.1351/pac200375091305)
- 33. D. Ellis, R. D. McIntosh, S. Esquirolea, C. Vinas, G. M. Rosair, F. Teixidor, A. J. Welch. Dalton Trans. 1009 (2008). (http://dx.doi.org/10.1039/b716169g)
- 34. W. Jiang. D. E. Harwell, M. D. Mortimer, C. B. Knobler, M. F. Hawthorne. Inorg. Chem. 35, 4355 (1996).
- 35. J. Muller, K. Base, T. F. Magnera, J. Michl. J. Am. Chem. Soc. 114, 9721 (1992). (http://dx.doi.org/10.1021/ja00050a096)
- 36. H. Hiura, T. Kanayama. J. Mol. Struct. 735-736, 367 (2005). (http://dx.doi.org/10.1016/j.molstruc.2004.11.013)
- 37. R. E. Williams. Chem. Rev. 92, 177 (1992). (http://dx.doi.org/10.1021/cr00010a001)
- 38. The consideration of a molecule or cluster as a 0D object allows the viewing of the whole multidimensional architecture as a set of N "points" (each corresponding to one of our units) in different dimensions (0D, 1D, 2D, or 3D) that have single-unit (optical, magnetic or electronic) properties and lead through appropriate interaction estimated from the computation for a pair of units to a "global" property.
- 39. J. M. Oliva, L. Serrano-Andres. J. Comput. Chem. 27, 524 (2006). (http://dx.doi.org/10.1002/jcc.20359)
- 40. V. Manero, J. M. Oliva, L. Serrano-Andres, D. J. Klein. J. Chem. Theory Comput. 3, 1399 (2007). (http://dx.doi.org/10.1021/ct700042z)
- 41. J. I. Burgos, L. Serrano-Andres, J. M. Oliva, D. J. Klein. Afinidad 533, 32 (2008).
- 42. L. Serrano-Andres, D. J. Klein, P. v. R. Schleyer, J. M. Oliva. J. Chem. Theory Comput. 4, 1338 (2008).
- 43. Leading to the carborane dianions 1,2-(R-)2-1,2-C2B10H10 with R- = {e-, CH2-, NH-, O-; SiH2-, PH-, S-}.
- 44. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley. Nature 318, 162 (1985). (http://dx.doi.org/10.1038/318162a0)
- 45. Y. H. Hu, E. J. Ruckenstein. J. Am. Chem. Soc. 127, 11277 (2005). (http://dx.doi.org/10.1021/ja043403y)
- 46. L. Liu, B. Gao, W. Chu, D. Chen, T. Hu, C. Wang, L. Dunsch, A. Marcelli, Y. Luo, Z. Wu. Chem. Commun. 474 (2008). (http://dx.doi.org/10.1039/b714603e)
- 47. E. D. Jemmis, M. M. Balakrishnarajan. J. Am. Chem. Soc. 122, 7392 (2000). (http://dx.doi.org/10.1021/ja001158m)
- 48. O. P. Charkin, N. M. Klimenko, D. Moran, A. M. Mebel, D. O. Charkin, P. v. R. Schleyer. J. Phys. Chem. A 106, 11594 (2002).
- 49. L. Serrano-Andres, J. M. Oliva. Chem. Phys. Lett. 432, 235 (2006). (http://dx.doi.org/10.1016/j.cplett.2006.10.077)
- 50. R. L. Murry, G. E. Scuseria. Science 263, 791 (1994). (http://dx.doi.org/10.1126/science.263.5148.791)
- 51. B. T. King, B. C. Noll, A. J. McKinley, J. Michl. J. Am. Chem. Soc. 118, 10902 (1996). (http://dx.doi.org/10.1021/ja9622160)
- 52. F. X. L. Xamena, L. Teruel, M. S. Galletero, A. Corma, H. Garcia. Chem. Commun. 499 (2008). (http://dx.doi.org/10.1039/b715303a)
- 53. J. Eriksson, K. Vyakaranam, J. Ludvik, J. Michl. J. Org. Chem. 72, 2351 (2007). (http://dx.doi.org/10.1021/jo0618371)
- 54. M. Cavallini, M. Facchini, C. Albonetti, F. Biscarini. Phys. Chem. Chem. Phys. 10, 784 (2008). (http://dx.doi.org/10.1039/b711677b)
- 55. R. Wasser (Ed.). Nanoelectronics and Information Technology, John Wiley, Weinheim (2003).
- 56. S. N. Smirnov, C. L. Braun, S. R. Greenfield, W. A. Svec, M. R. Wasiliewski. J. Phys. Chem. 100, 12329 (1996). (http://dx.doi.org/10.1021/jp960171j)
- 57. V. M. Tateavskii, V. A. Benderskii, S. S. Yarovoi. Rules and Methods for Calculating the Physico-Chemical Properties of Paraffinic Hydrocarbons, (English translation) Pergamon Press, Oxford (1961).
- 58. J. D. Cox, Pilcher. Thermochemisty of Organic and Organometallic Compounds, Academic Press, New York (1970).
- 59. S. W. Benson. Thermochemical Kinetics, John Wiley, New York (1976).
- 60. R. D. Poshusta, D. J. Klein. Phys. Rev. Lett. 48, 1555 (1982). (http://dx.doi.org/10.1103/PhysRevLett.48.1555)
- 61. J. P. Malrieu, D. Maynau, J. P. Daudey. Phys. Rev. B 38 (1984) 1817. (http://dx.doi.org/10.1103/PhysRevB.30.1817)
- 62. N. Guihery, N. B. Amor, D. Maynau, J. P. Malrieu. J. Chem. Phys. 104, 3701 (1996). (http://dx.doi.org/10.1063/1.471024)
- 63. J. Wu, T. G. Schmalz, D. J. Klein. J. Chem. Phys. 117, 9977 (2002). (http://dx.doi.org/10.1063/1.1520133)
- 64. J. C. Bonner, M. E. Fisher. Phys. Rev. A 135, 640 (1964). (http://dx.doi.org/10.1103/PhysRev.135.A640)
- 65. S. R. White, R. M. Noack, D. J. Scalapino. Phys. Rev. Lett. 73, 886 (1994). (http://dx.doi.org/10.1103/PhysRevLett.73.886)
- 66. S. Liang, N. Doucet, P. W. Anderson. Phys. Rev. Lett. 61, 365 (1988). (http://dx.doi.org/10.1103/PhysRevLett.61.365)
- 67. D. J. Klein, M. A. Garcia-Bach. Phys. Rev. B 19, 877 (1979). (http://dx.doi.org/10.1103/PhysRevB.19.877)
- 68. F. E. Harris. Phys. Rev. B 47, 7903 (1993). (http://dx.doi.org/10.1103/PhysRevB.47.7903)
- 69. R. F. Bishop, J. B. Parkinson, Y. Xian. Phys. Rev. B 44, 9425 (1991). (http://dx.doi.org/10.1103/PhysRevB.44.9425)
- 70. J. Cioslowski. Phys. Rev. 36, 374 (1987). (http://dx.doi.org/10.1103/PhysRevA.36.374)
- 71. J. Oitmaa, C. J. Hamer, Z. Weihong. Phys. Rev. B 45, 9834 (1992). (http://dx.doi.org/10.1103/PhysRevB.45.9834)
- 72. J. Wang. Phys. Rev. B 45, 2282 (1992). (http://dx.doi.org/10.1103/PhysRevB.45.2282)
- 73. S. R. White. Phys. Rev. Lett. 69, 2863 (1992). (http://dx.doi.org/10.1103/PhysRevLett.69.2863)
- 74. F. Verstraete, J. I. Cirac. arXiv:cond-mat/0407066v1
- 75. P. W. Anderson. The Theory of Superconductivity in the High-Tc Cuprates, Princeton University Press, Princeton, NJ (1997).
- 76. R. B. King. Russ. Chem. Bull. 42, 1283 (1993). (http://dx.doi.org/10.1007/BF00699915)