Pure Appl. Chem., 2009, Vol. 81, No. 4, pp. 709-717
http://dx.doi.org/10.1351/PAC-CON-08-10-03
Steric and electronic effects in SN2 reactions
References
- 1. C. K. Ingold. Structure and Mechanism in Organic Chemistry, Cornell University Press, Ithaca, NY (1953).
- 2. C. Reichard. Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, Weinheim (2003).
- 3. W. H. Saunders Jr., A. F. Cockerill. Mechanisms of Elimination Reactions, John Wiley, New York (1973).
- 4. B. D. Wladkowski, J. I. Brauman. J. Am. Chem. Soc. 114, 10643 (1992). (http://dx.doi.org/10.1021/ja00052a074)
- 5. C. H. DePuy, S. Gronert, A. Mullin, V. M. Bierbaum. J. Am. Chem. Soc. 112, 8650 (1990). (http://dx.doi.org/10.1021/ja00180a003)
- 6. A. Thibblin. Chem. Soc. Rev. 22, 427 (1993). (http://dx.doi.org/10.1039/cs9932200427)
- 7. F. M. Bickelhaupt. J. Comput. Chem. 20, 114 (1999). (http://dx.doi.org/10.1002/(SICI)1096-987X(19990115)20:1<114::AID-JCC12>3.0.CO;2-L)
- 8. S. Gronert. Acc. Chem. Res. 36, 848 (2003). (http://dx.doi.org/10.1021/ar020042n)
- 9. S. M. Villano, S. Kato, V. M. Bierbaum. J. Am. Chem. Soc. 128, 736 (2006). (http://dx.doi.org/10.1021/ja057491d)
- 10. J. Gasteiger, M. G. Hutchings. J. Am. Chem. Soc. 106, 6489 (1984). (http://dx.doi.org/10.1021/ja00334a006)
- 11. R. W. Taft. J. Am. Chem. Soc. 75, 4231 (1953). (http://dx.doi.org/10.1021/ja01113a027)
- 12. E. Uggerud. Eur. Mass Spectrom. 6, 131 (2000). (http://dx.doi.org/10.1255/ejms.324)
- 13. A. Cherkasov. Curr. Comput.-Aid. Drug Des. 1, 21 (2005).
- 14. S. G. Lias, H. M. Rosenstock, K. Deard, B. W. Steiner, J. T. Herron, J. H. Holmes, R. D. Levin, J. F. Liebman, S. A. Kafafi, J. E. Bartmess, E. F. Hunter. In NIST Chemistry Webbook (<http://webbook.nist.goc/chemistry>) (2008).
- 15. L. Bache-Andreassen, E. Uggerud. Chem.Eur. J. 5, 1917 (1999). (http://dx.doi.org/10.1002/(SICI)1521-3765(19990604)5:6<1917::AID-CHEM1917>3.0.CO;2-R)
- 16. J. K. Laerdahl, E. Uggerud. Org. Biomol. Chem. 1, 2935 (2003). (http://dx.doi.org/10.1039/b302268d)
- 17. J. K. Laerdahl, L. Bache-Andreassen, E. Uggerud. Org. Biomol. Chem. 1, 2943 (2003). (http://dx.doi.org/10.1039/b302270f)
- 18. J. K. Laerdahl, P. U. Civcir, L. Bache-Andreassen, E. Uggerud. Org. Biom. Chem. 4, 135 (2006). (http://dx.doi.org/10.1039/b513315g)
- 19. R. A. Ochran, E. Uggerud. Int. J. Mass Spectrom. 265, 169 (2007). (http://dx.doi.org/10.1016/j.ijms.2007.02.005)
- 20. K. Morokuma. J. Chem. Phys. 55, 1236 (1971). (http://dx.doi.org/10.1063/1.1676210)
- 21. T. Ziegler, A. Rauk. Theor. Chim. Acta 46, 1 (1977).
- 22. I. Fernandez, G. Frenking, E. Uggerud. Chem.Eur. J. 15, 2166 (2009). (http://dx.doi.org/10.1002/chem.200801833)
- 23. A. Lapworth. Nature 115, 625 (1925).
- 24. F. G. Bordwell, T. A. Cripe, D. L. Hughes. Adv. Chem. Ser. 215, 137 (1987).
- 25. A. Streitwieser. Proc. Natl. Acad. Sci. USA 82, 8288 (1985). (http://dx.doi.org/10.1073/pnas.82.24.8288)
- 26. M. J. Pellerite, J. I. Brauman. J. Am. Chem. Soc. 102, 5993 (1980). (http://dx.doi.org/10.1021/ja00539a003)
- 27. M. J. Pellerite, J. I. Brauman. J. Am. Chem. Soc. 105, 2672 (1983). (http://dx.doi.org/10.1021/ja00347a026)
- 28. S. Wolfe, D. J. Mitchell, H. B. Schlegel. J. Am. Chem. Soc. 103, 7694 (1981). (http://dx.doi.org/10.1021/ja00415a069)
- 29. E. Uggerud. J. Chem. Soc., Perkin Trans. 2 1465 (1999). (http://dx.doi.org/10.1039/a900380k)
- 30. Y. Ren, J. L. Wolk, S. Hoz. Int. J. Mass Spectrom. 225, 167 (2003). (http://dx.doi.org/10.1016/S1387-3806(02)01113-2)
- 31. J. M. Gonzales, W. D. Allen, H. F. Schaefer. J. Phys. Chem. A 109, 10613 (2005). (http://dx.doi.org/10.1021/jp054734f)
- 32. T. B. McMahon, P. Kebarle. Can. J. Chem. 63, 3160 (1985). (http://dx.doi.org/10.1139/v85-522)
- 33. T. B. McMahon, T. Heinis, G. Nicol, J. K. Hovey, P. Kebarle. J. Am. Chem. Soc. 110, 7591 (1988). (http://dx.doi.org/10.1021/ja00231a002)
- 34. E. Uggerud. Chem.Eur. J. 12, 1127 (2006). (http://dx.doi.org/10.1002/chem.200500639)
- 35. S. Hoz, H. Basch, J. L. Wolk, T. Hoz, E. Rozental. J. Am. Chem. Soc. 121, 7724 (1999). (http://dx.doi.org/10.1021/ja984315e)
- 36. D. W. Kim, D. S. Ahn, Y. H. Oh, S. Lee, H. S. Kil, S. J. Oh, S. J. Lee, J. S. Kim, J. S. Ryu, D. H. Moon, D. Y. Chi. J. Am. Chem. Soc. 128, 16394 (2006). (http://dx.doi.org/10.1021/ja0646895)
- 37. A. P. Bento, F. M. Bickelhaupt. J. Org. Chem. 73, 7290 (2008). (http://dx.doi.org/10.1021/jo801215z)
- 38. T. B. Phan, M. Breugst, H. Mayr. Angew. Chem., Int. Ed. 45, 3869 (2006). (http://dx.doi.org/10.1002/anie.200600542)
- 39. R. W. F. Bader Research group, AIMPAC, Hamilton, McMaster University, Canada (2008): <www.chemistry.mcmaster.ca/aimpac>.
- 40. L. Joubert, M. Pavone, V. Barone, C. Adamo. J. Chem. Theory Comput. 2, 1220 (2006). (http://dx.doi.org/10.1021/ct0600159)
- 41. B. Galabov, V. Nikolova, J. J. Wilke, H. F. Schaefer, W. D. Allen. J. Am. Chem. Soc. 130, 9887 (2008). (http://dx.doi.org/10.1021/ja802246y)
- 42. G. D. Ruggiero, I. H. Williams. J. Chem. Soc., Perkin Trans. 2 591 (2002). (http://dx.doi.org/10.1039/b108428c)
- 43. Y. Ren, J. L. Wolk, S. Hoz. Int. J. Mass Spectrom. 221, 59 (2002). (http://dx.doi.org/10.1016/S1387-3806(02)00894-1)
- 44. Y. Ren, J. L. Wolk, S. Hoz. Int. J. Mass Spectrom. 220, 1 (2002). (http://dx.doi.org/10.1016/S1387-3806(02)00733-9)
- 45. T. I. Solling, A. Pross, L. Radoma. Int. J. Mass Spectrom. 210/211, 1 (2001). (http://dx.doi.org/10.1016/S1387-3806(01)00426-2)
- 46. T. I. Solling, L. Radom. Chem.Eur. J. 7, 1516 (2001). (http://dx.doi.org/10.1002/1521-3765(20010401)7:7<1516::AID-CHEM1516>3.0.CO;2-Q)
- 47. T. I. Solling, L. Radom. Eur. J. Mass Spectrom. 6, 153 (2000). (http://dx.doi.org/10.1255/ejms.335)
- 48. T. I. Solling, S. B. Wild, L. Radom. Inorg. Chem. 38, 6049 (1999). (http://dx.doi.org/10.1021/ic991080e)
- 49. M. A. vanBochove, M. Swart, F. M. Bickelhaupt. J. Am. Chem. Soc. 128, 10738 (2006). (http://dx.doi.org/10.1021/ja0606529)