CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2009, Vol. 81, No. 4, pp. 649-665

http://dx.doi.org/10.1351/PAC-CON-08-08-27

Proton transfers in aromatic systems: How aromatic is the transition state?

Claude F. Bernasconi

Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA

Abstract: The question as to what extent aromaticity in a reactant or product is expressed in the transition state of a reaction has only recently received serious attention. Inasmuch as aromaticity is related to resonance, one might expect that, in a reaction that leads to aromatic products, its development at the transition state should lag behind bond changes as is invariably the case for the development of resonance in reactions that lead to delocalized products. However, recent experimental and computational studies on proton transfers from carbon acids suggest the opposite behavior, i.e., the development of aromaticity at the transition state is more advanced than the proton transfer. The evidence for this claim is based on the determination of intrinsic barriers that show a decrease with increasing aromaticity. According to the Principle of Nonperfect Synchronization (PNS), this decrease in the intrinsic barrier implies a disproportionately large amount of aromatic stabilization of the transition state. Additional evidence for the high degree of transition state aromaticity comes from the calculation of aromaticity indices such as HOMA, NICS, and the Bird Index. Possible reasons why the degree to which aromaticity and resonance are expressed at the transition state is different are discussed.