Pure Appl. Chem., 2009, Vol. 81, No. 4, pp. 571-583
http://dx.doi.org/10.1351/PAC-CON-08-08-14
Symmetry of hydrogen bonds in solution
References
- 1. G. A. Jeffrey. An Introduction to Hydrogen Bonding, Oxford University Press, Oxford (1997).
- 2. G. Peinel. Chem. Phys. Lett. 65, 324 (1979). (http://dx.doi.org/10.1016/0009-2614(79)87074-8)
- 3. J. N. Woodford. J. Phys. Chem. A 111, 8519 (2007). (http://dx.doi.org/10.1021/jp073098d)
- 4. (a). J. A. Gerlt, M. M. Kreevoy, W. W. Cleland, P. A. Frey. Chem. Biol. 4, 259 (1997); (http://dx.doi.org/10.1016/S1074-5521(97)90069-7)
- 4. (b). P. A. Frey, W. W. Cleland. Bioorg. Chem. 26, 175 (1998); (http://dx.doi.org/10.1006/bioo.1998.1097)
- 4. (c). W. W. Cleland. Arch. Biochem. Biophys. 382, 1 (2000). (http://dx.doi.org/10.1006/abbi.2000.2011)
- 5. (a). J. P. Guthrie. Chem. Biol. 3, 163 (1996); (http://dx.doi.org/10.1016/S1074-5521(96)90258-6)
- 5. (b). C. L. Perrin, J. B. Nielson. Annu. Rev. Phys. Chem. 48, 511 (1997); (http://dx.doi.org/10.1146/annurev.physchem.48.1.511)
- 5. (c). C. N. Schutz, A. Warshel. Proteins: Struct., Funct., Bioinform. 55, 711 (2004). (http://dx.doi.org/10.1002/prot.20096)
- 6. J. S. Lau, C. L. Perrin. In Isotope Effects in Chemistry and Biology, Part 3, Isotope Effects on Hydrogen Bond Structure and Dynamics, A. Kohen, H. H. Limbach (Eds.), pp. 231-252, CRC Press, Cleveland (2005).
- 7. C. L. Perrin. Pure Appl. Chem. 67, 719 (1995). (http://dx.doi.org/10.1351/pac199567050719)
- 8. (a). M. Saunders, L. Telkowski, M. Kates. J. Am. Chem. Soc. 99, 8070 (1977); (http://dx.doi.org/10.1021/ja00466a060)
- 8. (b). H.-U. Siehl. Adv. Phys. Org. Chem. 23, 63 (1987); (http://dx.doi.org/10.1016/S0065-3160(08)60203-8)
- 8. (c). D. A. Forsyth. In Isotopes in Organic Chemistry, Vol. 6, Chap. 1, E. Buncel, C. C. Lee (Eds.), Elsevier, Amsterdam (1987).
- 9. P. E. Hansen. J. Labelled Compd. Radiopharm. 50, 967 (2007). (http://dx.doi.org/10.1002/jlcr.1440)
- 10. (a). C. L. Perrin, J. B. Nielson, Y.-J. Kim. Ber. Bunsenges. Phys. Chem. 102, 403 (1998);
- 10. (b). C. L. Perrin, Y.-J. Kim. J. Am. Chem. Soc. 120, 12641 (1998). (http://dx.doi.org/10.1021/ja9825579)
- 11. I. N. Levine. Quantum Chemistry, 2nd ed., p. 289ff, Allyn & Bacon, Boston (1974).
- 12. C. L. Perrin, Y.-J. Kim. Inorg. Chem. 39, 3902 (2000). (http://dx.doi.org/10.1021/ic000382+)
- 13. C. L. Perrin, Y.-J. Kim, J. Kuperman. J. Phys. Chem. A 105, 11383 (2001). (http://dx.doi.org/10.1021/jp013660e)
- 14. (a). C. L. Perrin, J. D. Thoburn. J. Am. Chem. Soc. 111, 8010 (1989); (http://dx.doi.org/10.1021/ja00202a050)
- 14. (b). C. L. Perrin, J. D. Thoburn. J. Am. Chem. Soc. 114, 8559 (1992); (http://dx.doi.org/10.1021/ja00048a031)
- 14. (c). C. L. Perrin. Science 266, 1665 (1994). (http://dx.doi.org/10.1126/science.266.5191.1665)
- 15. (a). S. L. R. Ellison, M. J. T. Robinson. J. Chem. Soc., Chem Commun. 745 (1983); (http://dx.doi.org/10.1039/c39830000745)
- 15. (b). N. Tanaka, M. Araki. J. Am. Chem. Soc. 107, 7780 (1985). (http://dx.doi.org/10.1021/ja00311a103)
- 16. D. R. Kent IV, K. A. Petterson, F. Gregoire, E. Snyder-Frey, L. J. Hanely, R. P. Muller, W. A. Goddard III, J. D. Roberts. J. Am. Chem. Soc. 124, 4481 (2002). (http://dx.doi.org/10.1021/ja012016a)
- 17. C. L. Perrin, T. Arrhenius. J. Am. Chem. Soc. 100, 5249 (1978). (http://dx.doi.org/10.1021/ja00484a078)
- 18. C. L. Perrin, J. B. Nielson. J. Am. Chem. Soc. 119, 12734 (1997). (http://dx.doi.org/10.1021/ja9729084)
- 19. (a). J. Mavri, M. Hodoscek, D. Hadzi. J. Mol. Struct. 209 (1990);
- 19. (b). J. Mavri, M. Hodoscek, D. Hadzi. THEOCHEM 68, 421 (1990). (http://dx.doi.org/10.1016/0166-1280(90)80093-4)
- 20. (a). L. L. McCoy, G. W. Nachtigall. J. Am. Chem. Soc. 85, 1321 (1963); (http://dx.doi.org/10.1021/ja00892a023)
- 20. (b). L. L. McCoy. J. Am. Chem. Soc. 89, 1673 (1967). (http://dx.doi.org/10.1021/ja00983a024)
- 21. L. Eberson. Acta Chem. Scand. 13, 211 (1959). (http://dx.doi.org/10.3891/acta.chem.scand.13-0211)
- 22. C. L. Perrin, J. S. Lau, Y.-J. Kim, P. Karri. To be published.
- 23. R. D. Ellison, H. A. Levy. Acta Crystallogr. 19, 260 (1965). (http://dx.doi.org/10.1107/S0365110X65003195)
- 24. E. V. Borisov, E. V. Skorodumov, V. M. Pachevskaya, P. E. Hansen. Magn. Reson. Chem. 43, 992 (2005). (http://dx.doi.org/10.1002/mrc.1673)
- 25. M. Garcia-Viloca, A. Gonzalez-Lafont, J. M. Lluch. J. Am. Chem. Soc. 121, 9198 (1999). (http://dx.doi.org/10.1021/ja9918831)
- 26. (a). E. A. Halevi, M. Nussim, A. Ron. J. Chem. Soc. 866 (1963); (http://dx.doi.org/10.1039/jr9630000866)
- 26. (b). Y. Bary, H. Gilboa, E. A. Halevi. J. Chem. Soc., Perkin Trans. 2 938 (1979). (http://dx.doi.org/10.1039/p29790000938)
- 27. (a). C. L. Perrin, M. A. Fabian, K. B. Armstrong. J. Org. Chem. 59, 5246 (1994); (http://dx.doi.org/10.1021/jo00097a028)
- 27. (b). C. L. Perrin, M. A. Fabian. Anal. Chem. 68, 2127 (1996). (http://dx.doi.org/10.1021/ac960117z)
- 28. (a). C. L. Perrin, B. K. Ohta, J. Kuperman. J. Am. Chem. Soc. 125, 15008 (2003); (http://dx.doi.org/10.1021/ja038343v)
- 28. (b). C. L. Perrin, B. K. Ohta, J. Kuperman, J. Liberman, M. Erdelyi. J. Am. Chem. Soc. 127, 9641 (2005). (http://dx.doi.org/10.1021/ja0511927)
- 29. C. L. Perrin, Y. Dong. J. Am. Chem. Soc. 130, 11143 (2008). (http://dx.doi.org/10.1021/ja803084w)
- 30. C. L. Perrin, B. K. Ohta. J. Am. Chem. Soc. 123, 6520 (2001). (http://dx.doi.org/10.1021/ja0036965)
- 31. C. L. Perrin, B. K. Ohta. J. Mol. Struct. 644, 1 (2003). (http://dx.doi.org/10.1016/S0022-2860(02)00210-7)
- 32. C. L. Perrin, J. S. Lau. J. Am. Chem. Soc. 128, 11820 (2006). (http://dx.doi.org/10.1021/ja063797o)
- 33. C. L. Perrin, B. K. Ohta. Bioorg. Chem. 30, 3 (2002). (http://dx.doi.org/10.1006/bioo.2001.1222)
- 34. (a). P. Gilli, V. Bertolasi V. Ferretti, G. Gilli. J. Am. Chem. Soc. 116, 909 (1994);
- 34. (b). P. Gilli, V. Bertolasi, L. Pretto, V. Ferretti, G. Gilli. J. Am. Chem. Soc. 126, 3845 (2004). (http://dx.doi.org/10.1021/ja030213z)
- 35. F. Hibbert, J. Emsley. Adv. Phys. Org. Chem. 26, 255 (1990). (http://dx.doi.org/10.1016/S0065-3160(08)60047-7)
- 36. (a). R. W. Alder. Chem. Rev. 89, 1215 (1989); (http://dx.doi.org/10.1021/cr00095a015)
- 36. (b). H. A. Staab, T. Saupe. Angew. Chem., Int. Ed. Engl. 27, 865 (1988). (http://dx.doi.org/10.1002/anie.198808653)
- 37. S. Shan, D. Herschlag. Proc. Natl. Acad. Sci. USA 93, 14474 (1996). (http://dx.doi.org/10.1073/pnas.93.25.14474)
- 38. W. P. Jencks. Catalysis in Chemistry and Enzymology, pp. 282-296, McGraw-Hill, New York (1969).
- 39. D. A. Kraut, P. A. Sigala, B. Pybus, C. W. Liu, D. Ringe, G. A. Petski, D. Herschlag. PLoS Biol. 4, 501 (2006). (http://dx.doi.org/10.1371/journal.pbio.0040099)
- 40. (a). P. Schah-Mohammedi, I. G. Shenderovich, C. Detering, H. H. Limbach, P. M. Tolstoy, S. M. Smirnov, G. S. Denisov, N. S. Golubev. J. Am. Chem. Soc. 122, 12878 (2000); (http://dx.doi.org/10.1021/ja0017615)
- 40. (b). I. G. Shenderovich, A. P. Burtsev, G. S. Denisov, N. S Golubev, H. H. Limbach. Magn. Reson. Chem. 39, S91 (2001); (http://dx.doi.org/10.1002/mrc.938)
- 40. (c). C. L. Perrin, J. S. Lau, B. K. Ohta. Pol. J. Chem. 77, 1693 (2003).
- 41. B. I. Gislason, H. Strehlow. Aust. J. Chem. 36, 1941 (1983).
- 42. R. A. Marcus, N. Sutin. Biochim. Biophys. Acta 811, 265 (1985).
- 43. G. Herzberg. Molecular Spectra and Molecular Structure, Vol. II, Infrared and Raman Spectra of Polyatomic Molecules, p. 221ff, Van Nostrand, Princeton (1945).
- 44. M. Saunders, F. Yamada. J. Am. Chem. Soc. 85, 1882 (1963). (http://dx.doi.org/10.1021/ja00895a049)
- 45. (a). K. M. Harmon, R. R. Lovelace. J. Phys. Chem. 86, 900 (1982); (http://dx.doi.org/10.1021/j100395a012)
- 45. (b). J. C. Evans, H. J. Bernstein. Can. J. Chem. 34, 1127 (1956); (http://dx.doi.org/10.1139/v56-146)
- 45. (c). A. E. Johnson, A. B. Myers. J. Phys. Chem. 100, 7778 (1996); (http://dx.doi.org/10.1021/jp953052x)
- 45. (d). M. R. Waterland, A. M. Kelley. J. Chem. Phys. 113, 6760 (2000); (http://dx.doi.org/10.1063/1.1310615)
- 45. (e). Z. Liu, G. Wu. Chem. Phys. 316, 25 (2005). (http://dx.doi.org/10.1016/j.chemphys.2005.04.025)
- 46. D. C. Dong, M. A. Winnik. Photochem. Photobiol. 35, 17 (1982). (http://dx.doi.org/10.1111/j.1751-1097.1982.tb03805.x)