Pure Appl. Chem., 2009, Vol. 81, No. 2, pp. 263-272
http://dx.doi.org/10.1351/PAC-CON-08-08-16
Exploring RNA-ligand interactions
References
- 1. T. Hermann, Y. Tor. Exper. Opin. Therap. Patents 15, 49 (2005).
- 2. Y. Tor. Angew. Chem., Int. Ed. 38, 1579 (1999). (http://dx.doi.org/10.1002/(SICI)1521-3773(19990601)38:11<1579::AID-ANIE1579>3.0.CO;2-H)
- 3. (a). K. Michael, Y. Tor. Chem.Eur. J. 4, 2091 (1998); (http://dx.doi.org/10.1002/(SICI)1521-3765(19981102)4:11<2091::AID-CHEM2091>3.0.CO;2-3)
- 3. (b). Y. Tor. ChemBioChem 4, 998, (2003); (http://dx.doi.org/10.1002/cbic.200300680)
- 3. (c). Y. Tor. Biochimie 88, 1045 (2006). (http://dx.doi.org/10.1016/j.biochi.2006.03.005)
- 4. I. R. Hooper. In Aminoglycosides Antibiotics. Handbook of Experimental Pharmacology, S. Umezawa, I. R. Hooper (Eds.), Springer-Verlag, New York, 62, 1 (1982).
- 5. D. Moazed, H. F. Noller. Nature 327, 389, (1987). (http://dx.doi.org/10.1038/327389a0)
- 6. U. von Ahsen, J. Davies, R. Schroeder. Nature 353, 368 (1991). (http://dx.doi.org/10.1038/353368a0)
- 7. M. L. Zapp, S. Stern, M. R. Green. Cell 74, 969 (1993). (http://dx.doi.org/10.1016/0092-8674(93)90720-B)
- 8. (a). T. Hermann. Angew. Chem., Int. Ed. 39, 1890 (2000); (http://dx.doi.org/10.1002/1521-3773(20000602)39:11<1890::AID-ANIE1890>3.0.CO;2-D)
- 8. (b). J. R. Thomas, P. J. Hergenrother. Chem. Rev. 108, 1171 (2008). (http://dx.doi.org/10.1021/cr0681546)
- 9. T. Hermann, E. Westhof. J. Mol. Biol. 276, 903 (1998). (http://dx.doi.org/10.1006/jmbi.1997.1590)
- 10. Y. Tor, T. Hermann, E. Westhof. Chem. Biol. 5, R277 (1998). (http://dx.doi.org/10.1016/S1074-5521(98)90286-1)
- 11. (a). O. C. Uhlenbeck. Nature 328, 596 (1987); (http://dx.doi.org/10.1038/328596a0)
- 11. (b). K. R. Birikh, P. A. Heaton, F. Eckstein. Eur. J. Biochem. 245, 1 (1997); (http://dx.doi.org/10.1111/j.1432-1033.1997.t01-3-00001.x)
- 11. (c). N. K. Vaish, A. R. Kore, F. Eckstein. Nucleic Acids Res. 26, 5237 (1998). (http://dx.doi.org/10.1093/nar/26.23.5237)
- 12. (a). S. Verma, N. K. Vaish, F. Eckstein. Curr. Opin. Chem. Biol. 1, 532 (1997); (http://dx.doi.org/10.1016/S1367-5931(97)80049-X)
- 12. (b). J. E. Wedekind, D. B. McKay. Annu. Rev. Biophys. Biomol. Struct. 27, 475 (1998); (http://dx.doi.org/10.1146/annurev.biophys.27.1.475)
- 12. (c). T. K. Stage-Zimmermann, O. C. Uhlenbeck. RNA 4, 875 (1998); (http://dx.doi.org/10.1017/S1355838298980876)
- 12. (d). D. M. Zhou, K. Taira. Chem. Rev. 98, 991 (1998); (http://dx.doi.org/10.1021/cr9604292)
- 12. (e). M. Amarzguioui, H. Prydz. Cell. Mol. Life Sci. 54, 1175 (1998). (http://dx.doi.org/10.1007/s000180050247)
- 13. T. K. Stage, K. J. Hertel, O. C. Uhlenbeck. RNA 1, 95 (1995).
- 14. (a). H. Wang, Y. Tor. J. Am. Chem. Soc. 119, 8734 (1997); (http://dx.doi.org/10.1021/ja9715105)
- 14. (b). H. Wang, Y. Tor. Bioorg. Med. Chem. Lett. 7, 1951 (1997); (http://dx.doi.org/10.1016/S0960-894X(97)00339-9)
- 14. (c). H. Wang, T. Tor. Angew. Chem., Int. Ed. 37, 109 (1998). (http://dx.doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<109::AID-ANIE109>3.0.CO;2-0)
- 15. S. R. Kirk, N. W. Luedtke, Y. Tor. Bioorg. Med. Chem. 9, 2295 (2001). (http://dx.doi.org/10.1016/S0968-0896(01)00123-7)
- 16. (a). M. E. Hawkins. Cell Biochem. Biophys. 34, 257 (2001); (http://dx.doi.org/10.1385/CBB:34:2:257)
- 16. (b). M. J. Rist, J. P. Marino. Curr. Org. Chem. 6, 775 (2002); (http://dx.doi.org/10.2174/1385272023373914)
- 16. (c). A. Okamoto, Y. Saito, I. J. Saito. Photochem. Photobiol. C: Photochem. Rev. 6, 108 (2005); (http://dx.doi.org/10.1016/j.jphotochemrev.2005.07.002)
- 16. (d). J. N. Wilson, E. T. Kool. Org. Biomol. Chem. 4, 4265 (2006). (http://dx.doi.org/10.1039/b612284c)
- 17. Y. Tor, S. Del Valle, D. Jaramillo, S. G. Srivatsan, A. Rios, H. Weizman. Tetrahedron 63, 3608, (2007). (http://dx.doi.org/10.1016/j.tet.2007.01.075)
- 18. F. S. Wettack, R. Klapthor, A. Shedd, M. Koeppe, K. Janda, P. Dwyer, K. Stratton. The Photophysics of Several Condensed Ring Heteroaromatic Compounds. NBS Special Publication (United States), 526, 60 (1978).
- 19. N. J. Greco, Y. Tor. Tetrahedron 63, 3515 (2007). (http://dx.doi.org/10.1016/j.tet.2007.01.073)
- 20. N. J. Greco, Y. Tor. J. Am. Chem. Soc. 127, 10784 (2005). (http://dx.doi.org/10.1021/ja052000a)
- 21. S. G. Srivatsan, Y. Tor. J. Am. Chem. Soc. 129, 2044 (2007). (http://dx.doi.org/10.1021/ja066455r)
- 22. S. G. Srivatsan, H. Weizman, Y. Tor. Org. Biomol. Chem. 6, 1334 (2008). (http://dx.doi.org/10.1039/b801054d)
- 23. R. W. Sinkeldam, Y. Tor. Org. Biomol. Chem. 5, 2523 (2007). (http://dx.doi.org/10.1039/b707719j)
- 24. C. Reichardt. Chem. Rev. 94, 2319 (1994). (http://dx.doi.org/10.1021/cr00032a005)
- 25. L. P. Kotra, J. Haddad, S. Mobashery. Antimicrob. Agents Chemother. 44, 3249 (2000). (http://dx.doi.org/10.1128/AAC.44.12.3249-3256.2000)
- 26. D. J. Knowles, N. Foloppe, N. B. Matassova, A. I. Murchie. Curr. Opin. Pharmacol. 2, 501 (2002). (http://dx.doi.org/10.1016/S1471-4892(02)00205-9)
- 27. P. Purohit, S. Stern. Nature 370, 659 (1994). (http://dx.doi.org/10.1038/370659a0)
- 28. M. Kaul, C. M. Barbieri, D. S. Pilch. J. Am. Chem. Soc. 126, 3447 (2004). (http://dx.doi.org/10.1021/ja030568i)
- 29. S. Shandrick, Q. Zhao, Q. Han, B. K. Ayida, M. Takahashi, G. C. Winters, K. B. Simonsen, D. Vourloumis, T. Hermann. Angew. Chem., Int. Ed. 43, 3177 (2004). (http://dx.doi.org/10.1002/anie.200454217)
- 30. M. Kaul, C. M. Barbieri, D. S. Pilch. J. Am. Chem. Soc. 128, 1261 (2006). (http://dx.doi.org/10.1021/ja056159z)
- 31. B. Francois, R. J. M. Russell, J. B. Murray, F. Aboul-ela, B. Masquida, Q. Vicens, E. Westhof. Nucleic Acids Res. 33, 5677 (2005). (http://dx.doi.org/10.1093/nar/gki862)
- 32. (a). V. L. Schramm. Curr. Opin. Chem. Biol. 1, 323 (1997); (http://dx.doi.org/10.1016/S1367-5931(97)80069-5)
- 32. (b). P. A. Aas, M. Otterlei, P. O. Falnes, C. B. Vagbo, F. Skorpen, M. Akbari, O. Sundheim, M. Bjoras, G. Slupphaug, E. Seeberg, H. E. Krokan. Nature 421, 859 (2003); (http://dx.doi.org/10.1038/nature01363)
- 32. (c). T. J. Begley, L. D. Samson. Nature 421, 795 (2003); (http://dx.doi.org/10.1038/421795a)
- 32. (d). J. D. Trzupek, T. L. Sheppard. Org. Lett. 7, 1493 (2005); (http://dx.doi.org/10.1021/ol050120h)
- 32. (e). P. A. Kupfer, C. J. Leumann. ChemBioChem 6, 1970 (2005); (http://dx.doi.org/10.1002/cbic.200500204)
- 32. (f). P. A. Kupfer, C. J. Leumann. Nucleic Acids Res. 35, 58 (2007). (http://dx.doi.org/10.1093/nar/gkl948)
- 33. (a). Y. Endo, I. G. Wool. J. Biol. Chem. 257, 9054 (1982);
- 33. (b). R. R. Gutell, M. W. Gray, M. N. Schnare. Nucleic Acids Res. 21, 3055 (1993); (http://dx.doi.org/10.1093/nar/21.13.3055)
- 33. (c). K. Nielsen, R. S. Boston. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 785 (2001). (http://dx.doi.org/10.1146/annurev.arplant.52.1.785)
- 34. S. G. Srivatsan, N. J. Greco, Y. Tor. Angew. Chem., Int. Ed. 47, 6661 (2008). (http://dx.doi.org/10.1002/anie.200802199)
- 35. Y. Tor. Tetrahedron 63, 3425 (2007). (http://dx.doi.org/10.1016/j.tet.2007.01.070)