Pure Appl. Chem., 2009, Vol. 81, No. 12, pp. 2235-2251
http://dx.doi.org/10.1351/PAC-CON-09-07-09
Published online 2009-10-31
Gas adsorption applications of porous metal–organic frameworks*
References
- 1. J. R. Chem. Soc. Rev. 38, 1213 (2009). ( , O. M. Yaghi. http://dx.doi.org/10.1039/b903811f)
- 2. D. J. Chem. Soc. Rev. 38, 1257 (2009). ( , J. L. Mendoza-Cortes, M. O’Keeffe, O. M. Yaghi. http://dx.doi.org/10.1039/b817735j)
- 3. G. Chem. Soc. Rev. 37, 191 (2008). ( . http://dx.doi.org/10.1039/b618320b)
- 4. S. Ma. Ph.D. Dissertation, Miami University (2008).
- 5. S. Ma, C. D. Collier, H.-C. Zhou. “Design and construction of metal-organic frameworks for hydrogen storage and selective gas adsorption”, in Design and Construction of Coordination Polymers, M. Hong (Ed.), John Wiley, New York (2009).
- 6. DOE Office of Energy Efficiency and Renewable Energy Hydrogen. Fuel Cells & Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan, available at: <http://www.eere.energy.gov/hydrogenandfuelcells/mypp>.
- 7. U.S. Department of Energy. Targets for on-board hydrogen storage systems: Current R&D focus is on 2015 targets with potential to meet ultimate targets (<http://www1.eere.energy.gov/ hydrogenandfuelcells/storage/current_technology.html>).
- 8. D. J. J. Mater. Chem. 17, 3154 (2007). ( , H.-C. Zhou. http://dx.doi.org/10.1039/b702858j)
- 9. N. L. Science 300, 1127 (2003). ( , J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keefe, O. M. Yaghi. http://dx.doi.org/10.1126/science.1083440)
- 10. L. J. Chem. Soc. Rev. 38, 1294 (2009). ( , M. Dinca, J. R. Long. http://dx.doi.org/10.1039/b802256a)
- 11. J. L. C. J. Am. Chem. Soc. 126, 5666 (2004). ( , A. R. Millward, K. S. Park, O. M. Yaghi. http://dx.doi.org/10.1021/ja049408c)
- 12. X.-S. Angew. Chem., Int. Ed. 47, 7263 (2008). ( , S. Ma, P. M. Forster, D. Yuan, J. Eckert, J. J. Lopez, B. J. Murphy, J. B. Parise, H.‑C. Zhou. http://dx.doi.org/10.1002/anie.200802087)
- 13. J. L. C. Angew. Chem., Int. Ed. 44, 4670 (2005). ( , O. M. Yaghi. http://dx.doi.org/10.1002/anie.200462786)
- 14. J. L. C. J. Am. Chem. Soc. 128, 1304 (2006). ( , O. M. Yaghi. http://dx.doi.org/10.1021/ja056639q)
- 15. X.-S. Inorg. Chem. 48, 7519 (2009). ( , S. Ma, D. Yuan, J. W. Yoon, Y. K. Hwang, J.-S. Chang, X. Wang, M. R. Jørgensen, Y.-S. Chen, H.-C. Zhou. http://dx.doi.org/10.1021/ic901073w)
- 16. S. J. Am. Chem. Soc. 129, 1858 (2007). ( , D. Sun, M. Ambrogio, J. A. Fillinger, S. Parkin, H.-C. Zhou. http://dx.doi.org/10.1021/ja067435s)
- 17. X. Angew. Chem., Int. Ed. 45, 7358 (2006). ( , J. Jia, X. Zhao, K. M. Thomas, A. J. Blake, G. S. Walker, N. R. Champness, P. Hubberstey, M. Schröder. http://dx.doi.org/10.1002/anie.200601991)
- 18. S. R. Angew. Chem., Int. Ed. 37, 1460 (1998). ( , R. Robson. http://dx.doi.org/10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-Z)
- 19. S. J. Am. Chem. Soc. 130, 15896 (2008). ( , J. Eckert, P. M. Forster, J. W. Yoon, Y. K. Hwang, J.-S. Chang, C. D. Collier, J. B. Parise, H.-C. Zhou. http://dx.doi.org/10.1021/ja803492q)
- 20. D. H. J. Phys. Chem. B 110, 22987 (2006). ( , D. Kim, T. B. Lee, S. B. Choi, J. H. Yoon, J. Kim, K. Choi, S.-H. Choi. http://dx.doi.org/10.1021/jp065819z)
- 21. S. S. J. Am. Chem. Soc. 129, 8422 (2007). ( , W. A. Goddard III. http://dx.doi.org/10.1021/ja072599+)
- 22. S. Inorg. Chem. 48, 5263 (2009). ( , J. M. Simmons, D. Sun, D. Yuan, H.-C. Zhou. http://dx.doi.org/10.1021/ic900217t)
- 23. J. L. C. J. Am. Chem. Soc. 127, 14904 (2005). ( , J. Eckert, O. M. Yaghi. http://dx.doi.org/10.1021/ja0542690)
- 24. B. Angew. Chem., Int. Ed. 44, 4745 (2005). ( , N. W. Ockwig, A. R. Millward, D. S. Contreras, O. M. Yaghi. http://dx.doi.org/10.1002/anie.200462787)
- 25. A. G. J. Am. Chem. Soc. 128, 3494 (2006). ( , A. J. Matzger, O. M. Yaghi. http://dx.doi.org/10.1021/ja058213h)
- 26. H. J. Mater. Chem. 17, 3197 (2007). ( , M. A. Miller, O. M. Yaghi. http://dx.doi.org/10.1039/b703608f)
- 27. L. J. Am. Chem. Soc. 126, 1308 (2004). ( , M. B. Sander, X. Huang, J. Li, M. R. Smith, E. W. Bittner, B. C. Bockrath, J. K. Johnson. http://dx.doi.org/10.1021/ja0392871)
- 28. B. Angew. Chem., Int. Ed. 44, 72 (2005). ( , Y. Cui, M. R. Smith, E. W. Bittner, B. C. Bockrath, W. Lin. http://dx.doi.org/10.1002/anie.200461214)
- 29. M. J. Am. Chem. Soc. 128, 16876 (2006). ( , A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann, J. R. Long. http://dx.doi.org/10.1021/ja0656853)
- 30. S. K. Langmuir 22, 1688 (2006). ( , A. L. Myers. http://dx.doi.org/10.1021/la0523816)
- 31. M. J. Am. Chem. Soc. 127, 9376 (2005). ( , J. R. Long. http://dx.doi.org/10.1021/ja0523082)
- 32. P. M. J. Am. Chem. Soc. 128, 16846 (2006). ( , J. Eckert, B. D. Heiken, J. B. Parise, J. W. Yoon, S. H. Jhung, J. S. Chang, A. K. Cheetham. http://dx.doi.org/10.1021/ja0649217)
- 33. B. J. Am. Chem. Soc. 130, 6411 (2008). ( , X. Zhao, A. Putkham, K. Hong, E. B. Lobkovsky, E. J. Hurtado, A. J. Fletcher, K. M. Thomas. http://dx.doi.org/10.1021/ja710144k)
- 34. W. J. Am. Chem. Soc. 130, 15268 (2008). ( , H. Wu, T. Yildirim. http://dx.doi.org/10.1021/ja807023q)
- 35. S. J. Am. Chem. Soc. 128, 11734 (2006). ( , H.-C. Zhou. http://dx.doi.org/10.1021/ja063538z)
- 36. S. Inorg. Chem. 48, 5398 (2009). ( , D. Yuan, J. S. Chang, H.-C. Zhou. http://dx.doi.org/10.1021/ic900475q)
- 37. M. J. Am. Chem. Soc. 129, 11172 (2007). ( , J. R. Long. http://dx.doi.org/10.1021/ja072871f)
- 38. Y. J. Am. Chem. Soc. 128, 8136 (2006). ( , R. T. Yang. http://dx.doi.org/10.1021/ja061681m)
- 39. D. J. Collins, S. Ma, H.-C. Zhou. “Hydrogen and methane storage in MOFs”, in Metal-Organic Frameworks: Design and Application, L. MacGillivray (Ed.), Wiley-VCH, Weinheim (2009).
- 40. T. SAE Tech. Pap. Ser. 2000 (2000). , M. Rogers.
- 41. M. Angew. Chem., Int. Ed. 36, 1725 (1997). , T. Yoshitomi, K. Seki, H. Matsuzaka, S. Kitagawa.
- 42. M. Chem. Mater. 12, 1288 (2000). ( , M. Shimamura, S.-i. Noro, S. Minakoshi, A. Asami, K. Seki, S. Kitagawa. http://dx.doi.org/10.1021/cm990612m)
- 43. M. Science 295, 469 (2002). ( , J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi. http://dx.doi.org/10.1126/science.1067208)
- 44. T. Langmuir 20, 2683 (2004). ( , L. Sarkisov, O. M. Yaghi, R. Q. Snurr. http://dx.doi.org/10.1021/la0355500)
- 45. S. Inorg. Chem. 46, 8499 (2007). ( , X. S. Wang, C. D. Collier, E. S. Manis, H. C. Zhou. http://dx.doi.org/10.1021/ic701507r)
- 46. S. J. Am. Chem. Soc. 130, 15896 (2008). ( , J. Eckert, P. M. Forster, J. W. Yoon, Y. K. Hwang, J.-S. Chang, C. D. Collier, J. B. Parise, H.-C. Zhou. http://dx.doi.org/10.1021/ja803492q)
- 47. H. J. Phys. Chem. C 113, 3029 (2009). ( , W. Zhou, T. Yildirim. http://dx.doi.org/10.1021/jp8103276)
- 48. H. J. Am. Chem. Soc. 131, 4995 (2009). ( , W. Zhou, T. Yildirim. http://dx.doi.org/10.1021/ja900258t)
- 49. R. T. Yang. Gas Adsorption by Adsorption Processes, Butterworth, Boston (1997).
- 50. J.-R. Chem. Soc. Rev. 38, 1477 (2009). ( , R. J. Kuppler, H.-C. Zhou. http://dx.doi.org/10.1039/b802426j)
- 51. D. N. J. Am. Chem. Soc. 126, 32 (2004). ( , H. Chun, S. H. Yoon, D. Kim, K. Kim. http://dx.doi.org/10.1021/ja038678c)
- 52. S. M. Angew. Chem., Int. Ed. 46, 272 (2007). ( , J.-S. Chang, S. H. Jhung, J. W. Yoon, P. T. Wood. http://dx.doi.org/10.1002/anie.200601627)
- 53. B. Inorg. Chem. 46, 1233 (2007). ( , S. Ma, F. Zapata, F. R. Fronczek, E. B. Lobkovsky, H.-C. Zhou. http://dx.doi.org/10.1021/ic0616434)
- 54. B. Inorg. Chem. 46, 8490 (2007). ( , S. Ma, E. J. Hurtado, E. B. Lobkovsky, H.-C. Zhou. http://dx.doi.org/10.1021/ic7014034)
- 55. S. Angew. Chem., Int. Ed. 47, 4130 (2008). ( , X.-S. Wang, D. Yuan, H.-C. Zhou. http://dx.doi.org/10.1002/anie.200800312)
- 56. R. Ind. Eng. Chem. Res. 30, 752 (1991). ( , R. Rosensweig, D. Ruthven. http://dx.doi.org/10.1021/ie00052a020)
- 57. L. Angew. Chem., Int. Ed. 46, 4293 (2007). ( , C. E. A. Kirschhock, M. Maes, M. A. van der Veen, V. Finsy, A. Depla, J. A. Martens, G. V. Baron, P. A. Jacobs, J. F. M. Denayer, D. E. De Vos. http://dx.doi.org/10.1002/anie.200700056)
- 58. S. W. Sohn. “Kerosene ISOSIV process for production of normal paraffins”, in Handbook of Petroleum Refining Processes, 3rd ed., R. A. Meyers (Ed.), McGraw-Hill, New York (2004).
- 59. P. S. J. Phys. Chem. B 111, 6101 (2007). ( , F. Zapata, J. A. C. Silva, A. E. Rodrigues, B. Chen. http://dx.doi.org/10.1021/jp0721898)
- 60. S. Kulprathipanja, R. W. Neuzil. U.S. Patent 4 444 445 (1984).
- 61. B. Angew. Chem., Int. Ed. 45, 1390 (2006). ( , C. Liang, J. Yang, D. S. Contreras, Y. L. Clancy, E. B. Lobkovsky, O. M. Yaghi, S. Dai. http://dx.doi.org/10.1002/anie.200502844)
- 62. K. J. Am. Chem. Soc. 131, 10368 (2009). ( , D. H. Olson, J. Seidel, T. J. Emge, H. Gong, H. Zeng, J. Li. http://dx.doi.org/10.1021/ja9039983)
- 63. S. Angew. Chem., Int. Ed. 46, 2458 (2007). ( , D. Sun, X.-S. Wang, H.-C. Zhou. http://dx.doi.org/10.1002/anie.200604353)
- 64. S. J. Am. Chem. Soc. 131, 6445 (2009). ( , D. Sun, D. Yuan, X.-S. Wang, H.-C. Zhou. http://dx.doi.org/10.1021/ja808896f)