Pure Appl. Chem., 2009, Vol. 81, No. 12, pp. 2235-2251
http://dx.doi.org/10.1351/PAC-CON-09-07-09
Published online 2009-10-31
Gas adsorption applications of porous metal–organic frameworks*
References
- 1. J. R. , O. M. Yaghi. Chem. Soc. Rev. 38, 1213 (2009). (http://dx.doi.org/10.1039/b903811f)
- 2. D. J. , J. L. Mendoza-Cortes, M. O’Keeffe, O. M. Yaghi. Chem. Soc. Rev. 38, 1257 (2009). (http://dx.doi.org/10.1039/b817735j)
- 3. G. . Chem. Soc. Rev. 37, 191 (2008). (http://dx.doi.org/10.1039/b618320b)
- 4. S. Ma. Ph.D. Dissertation, Miami University (2008).
- 5. S. Ma, C. D. Collier, H.-C. Zhou. “Design and construction of metal-organic frameworks for hydrogen storage and selective gas adsorption”, in Design and Construction of Coordination Polymers, M. Hong (Ed.), John Wiley, New York (2009).
- 6. DOE Office of Energy Efficiency and Renewable Energy Hydrogen. Fuel Cells & Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan, available at: <http://www.eere.energy.gov/hydrogenandfuelcells/mypp>.
- 7. U.S. Department of Energy. Targets for on-board hydrogen storage systems: Current R&D focus is on 2015 targets with potential to meet ultimate targets (<http://www1.eere.energy.gov/ hydrogenandfuelcells/storage/current_technology.html>).
- 8. D. J. , H.-C. Zhou. J. Mater. Chem. 17, 3154 (2007). (http://dx.doi.org/10.1039/b702858j)
- 9. N. L. , J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keefe, O. M. Yaghi. Science 300, 1127 (2003). (http://dx.doi.org/10.1126/science.1083440)
- 10. L. J. , M. Dinca, J. R. Long. Chem. Soc. Rev. 38, 1294 (2009). (http://dx.doi.org/10.1039/b802256a)
- 11. J. L. C. , A. R. Millward, K. S. Park, O. M. Yaghi. J. Am. Chem. Soc. 126, 5666 (2004). (http://dx.doi.org/10.1021/ja049408c)
- 12. X.-S. , S. Ma, P. M. Forster, D. Yuan, J. Eckert, J. J. Lopez, B. J. Murphy, J. B. Parise, H.‑C. Zhou. Angew. Chem., Int. Ed. 47, 7263 (2008). (http://dx.doi.org/10.1002/anie.200802087)
- 13. J. L. C. , O. M. Yaghi. Angew. Chem., Int. Ed. 44, 4670 (2005). (http://dx.doi.org/10.1002/anie.200462786)
- 14. J. L. C. , O. M. Yaghi. J. Am. Chem. Soc. 128, 1304 (2006). (http://dx.doi.org/10.1021/ja056639q)
- 15. X.-S. , S. Ma, D. Yuan, J. W. Yoon, Y. K. Hwang, J.-S. Chang, X. Wang, M. R. Jørgensen, Y.-S. Chen, H.-C. Zhou. Inorg. Chem. 48, 7519 (2009). (http://dx.doi.org/10.1021/ic901073w)
- 16. S. , D. Sun, M. Ambrogio, J. A. Fillinger, S. Parkin, H.-C. Zhou. J. Am. Chem. Soc. 129, 1858 (2007). (http://dx.doi.org/10.1021/ja067435s)
- 17. X. , J. Jia, X. Zhao, K. M. Thomas, A. J. Blake, G. S. Walker, N. R. Champness, P. Hubberstey, M. Schröder. Angew. Chem., Int. Ed. 45, 7358 (2006). (http://dx.doi.org/10.1002/anie.200601991)
- 18. S. R. , R. Robson. Angew. Chem., Int. Ed. 37, 1460 (1998). (http://dx.doi.org/10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-Z)
- 19. S. , J. Eckert, P. M. Forster, J. W. Yoon, Y. K. Hwang, J.-S. Chang, C. D. Collier, J. B. Parise, H.-C. Zhou. J. Am. Chem. Soc. 130, 15896 (2008). (http://dx.doi.org/10.1021/ja803492q)
- 20. D. H. , D. Kim, T. B. Lee, S. B. Choi, J. H. Yoon, J. Kim, K. Choi, S.-H. Choi. J. Phys. Chem. B 110, 22987 (2006). (http://dx.doi.org/10.1021/jp065819z)
- 21. S. S. , W. A. Goddard III. J. Am. Chem. Soc. 129, 8422 (2007). (http://dx.doi.org/10.1021/ja072599+)
- 22. S. , J. M. Simmons, D. Sun, D. Yuan, H.-C. Zhou. Inorg. Chem. 48, 5263 (2009). (http://dx.doi.org/10.1021/ic900217t)
- 23. J. L. C. , J. Eckert, O. M. Yaghi. J. Am. Chem. Soc. 127, 14904 (2005). (http://dx.doi.org/10.1021/ja0542690)
- 24. B. , N. W. Ockwig, A. R. Millward, D. S. Contreras, O. M. Yaghi. Angew. Chem., Int. Ed. 44, 4745 (2005). (http://dx.doi.org/10.1002/anie.200462787)
- 25. A. G. , A. J. Matzger, O. M. Yaghi. J. Am. Chem. Soc. 128, 3494 (2006). (http://dx.doi.org/10.1021/ja058213h)
- 26. H. , M. A. Miller, O. M. Yaghi. J. Mater. Chem. 17, 3197 (2007). (http://dx.doi.org/10.1039/b703608f)
- 27. L. , M. B. Sander, X. Huang, J. Li, M. R. Smith, E. W. Bittner, B. C. Bockrath, J. K. Johnson. J. Am. Chem. Soc. 126, 1308 (2004). (http://dx.doi.org/10.1021/ja0392871)
- 28. B. , Y. Cui, M. R. Smith, E. W. Bittner, B. C. Bockrath, W. Lin. Angew. Chem., Int. Ed. 44, 72 (2005). (http://dx.doi.org/10.1002/anie.200461214)
- 29. M. , A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann, J. R. Long. J. Am. Chem. Soc. 128, 16876 (2006). (http://dx.doi.org/10.1021/ja0656853)
- 30. S. K. , A. L. Myers. Langmuir 22, 1688 (2006). (http://dx.doi.org/10.1021/la0523816)
- 31. M. , J. R. Long. J. Am. Chem. Soc. 127, 9376 (2005). (http://dx.doi.org/10.1021/ja0523082)
- 32. P. M. , J. Eckert, B. D. Heiken, J. B. Parise, J. W. Yoon, S. H. Jhung, J. S. Chang, A. K. Cheetham. J. Am. Chem. Soc. 128, 16846 (2006). (http://dx.doi.org/10.1021/ja0649217)
- 33. B. , X. Zhao, A. Putkham, K. Hong, E. B. Lobkovsky, E. J. Hurtado, A. J. Fletcher, K. M. Thomas. J. Am. Chem. Soc. 130, 6411 (2008). (http://dx.doi.org/10.1021/ja710144k)
- 34. W. , H. Wu, T. Yildirim. J. Am. Chem. Soc. 130, 15268 (2008). (http://dx.doi.org/10.1021/ja807023q)
- 35. S. , H.-C. Zhou. J. Am. Chem. Soc. 128, 11734 (2006). (http://dx.doi.org/10.1021/ja063538z)
- 36. S. , D. Yuan, J. S. Chang, H.-C. Zhou. Inorg. Chem. 48, 5398 (2009). (http://dx.doi.org/10.1021/ic900475q)
- 37. M. , J. R. Long. J. Am. Chem. Soc. 129, 11172 (2007). (http://dx.doi.org/10.1021/ja072871f)
- 38. Y. , R. T. Yang. J. Am. Chem. Soc. 128, 8136 (2006). (http://dx.doi.org/10.1021/ja061681m)
- 39. D. J. Collins, S. Ma, H.-C. Zhou. “Hydrogen and methane storage in MOFs”, in Metal-Organic Frameworks: Design and Application, L. MacGillivray (Ed.), Wiley-VCH, Weinheim (2009).
- 40. T. , M. Rogers. SAE Tech. Pap. Ser. 2000 (2000).
- 41. M. , T. Yoshitomi, K. Seki, H. Matsuzaka, S. Kitagawa. Angew. Chem., Int. Ed. 36, 1725 (1997).
- 42. M. , M. Shimamura, S.-i. Noro, S. Minakoshi, A. Asami, K. Seki, S. Kitagawa. Chem. Mater. 12, 1288 (2000). (http://dx.doi.org/10.1021/cm990612m)
- 43. M. , J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi. Science 295, 469 (2002). (http://dx.doi.org/10.1126/science.1067208)
- 44. T. , L. Sarkisov, O. M. Yaghi, R. Q. Snurr. Langmuir 20, 2683 (2004). (http://dx.doi.org/10.1021/la0355500)
- 45. S. , X. S. Wang, C. D. Collier, E. S. Manis, H. C. Zhou. Inorg. Chem. 46, 8499 (2007). (http://dx.doi.org/10.1021/ic701507r)
- 46. S. , J. Eckert, P. M. Forster, J. W. Yoon, Y. K. Hwang, J.-S. Chang, C. D. Collier, J. B. Parise, H.-C. Zhou. J. Am. Chem. Soc. 130, 15896 (2008). (http://dx.doi.org/10.1021/ja803492q)
- 47. H. , W. Zhou, T. Yildirim. J. Phys. Chem. C 113, 3029 (2009). (http://dx.doi.org/10.1021/jp8103276)
- 48. H. , W. Zhou, T. Yildirim. J. Am. Chem. Soc. 131, 4995 (2009). (http://dx.doi.org/10.1021/ja900258t)
- 49. R. T. Yang. Gas Adsorption by Adsorption Processes, Butterworth, Boston (1997).
- 50. J.-R. , R. J. Kuppler, H.-C. Zhou. Chem. Soc. Rev. 38, 1477 (2009). (http://dx.doi.org/10.1039/b802426j)
- 51. D. N. , H. Chun, S. H. Yoon, D. Kim, K. Kim. J. Am. Chem. Soc. 126, 32 (2004). (http://dx.doi.org/10.1021/ja038678c)
- 52. S. M. , J.-S. Chang, S. H. Jhung, J. W. Yoon, P. T. Wood. Angew. Chem., Int. Ed. 46, 272 (2007). (http://dx.doi.org/10.1002/anie.200601627)
- 53. B. , S. Ma, F. Zapata, F. R. Fronczek, E. B. Lobkovsky, H.-C. Zhou. Inorg. Chem. 46, 1233 (2007). (http://dx.doi.org/10.1021/ic0616434)
- 54. B. , S. Ma, E. J. Hurtado, E. B. Lobkovsky, H.-C. Zhou. Inorg. Chem. 46, 8490 (2007). (http://dx.doi.org/10.1021/ic7014034)
- 55. S. , X.-S. Wang, D. Yuan, H.-C. Zhou. Angew. Chem., Int. Ed. 47, 4130 (2008). (http://dx.doi.org/10.1002/anie.200800312)
- 56. R. , R. Rosensweig, D. Ruthven. Ind. Eng. Chem. Res. 30, 752 (1991). (http://dx.doi.org/10.1021/ie00052a020)
- 57. L. , C. E. A. Kirschhock, M. Maes, M. A. van der Veen, V. Finsy, A. Depla, J. A. Martens, G. V. Baron, P. A. Jacobs, J. F. M. Denayer, D. E. De Vos. Angew. Chem., Int. Ed. 46, 4293 (2007). (http://dx.doi.org/10.1002/anie.200700056)
- 58. S. W. Sohn. “Kerosene ISOSIV process for production of normal paraffins”, in Handbook of Petroleum Refining Processes, 3rd ed., R. A. Meyers (Ed.), McGraw-Hill, New York (2004).
- 59. P. S. , F. Zapata, J. A. C. Silva, A. E. Rodrigues, B. Chen. J. Phys. Chem. B 111, 6101 (2007). (http://dx.doi.org/10.1021/jp0721898)
- 60. S. Kulprathipanja, R. W. Neuzil. U.S. Patent 4 444 445 (1984).
- 61. B. , C. Liang, J. Yang, D. S. Contreras, Y. L. Clancy, E. B. Lobkovsky, O. M. Yaghi, S. Dai. Angew. Chem., Int. Ed. 45, 1390 (2006). (http://dx.doi.org/10.1002/anie.200502844)
- 62. K. , D. H. Olson, J. Seidel, T. J. Emge, H. Gong, H. Zeng, J. Li. J. Am. Chem. Soc. 131, 10368 (2009). (http://dx.doi.org/10.1021/ja9039983)
- 63. S. , D. Sun, X.-S. Wang, H.-C. Zhou. Angew. Chem., Int. Ed. 46, 2458 (2007). (http://dx.doi.org/10.1002/anie.200604353)
- 64. S. , D. Sun, D. Yuan, X.-S. Wang, H.-C. Zhou. J. Am. Chem. Soc. 131, 6445 (2009). (http://dx.doi.org/10.1021/ja808896f)
