CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2009, Vol. 81, No. 10, pp. 1857-1870

http://dx.doi.org/10.1351/PAC-CON-08-10-01

Published online 2009-10-03

Thermochemistry of organic molecules: The way to understand energy–structure relationships

María Victoria Roux*, Concepción Foces-Foces and Rafael Notario

Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain

References

  • 1. W. D. Good. J. Chem. Thermodyn. 2, 237 (1970). (http://dx.doi.org/10.1016/0021-9614(70)90088-1)
  • 2. C. J. Cramer. Essentials of Computational Chemistry. Theories and Models, John Wiley, Chichester (2002).
  • 3. L. A. Curtiss, P. C. Redfern, D. J. Frurip. "Theoretical methods for computing enthalpies of formation of gaseous compounds", in Reviews in Computational Chemistry, Vol. 15, K. B. Lipkowitz, D. B. Boyd (Eds.), Chap. 3, Wiley-VCH, New York (2000).
  • 4. M. V. Roux, J. Z. Davalos, P. Jimenez, H. Flores, J. L. Saiz, J.-L. M. Abboud, E. Juaristi. J. Chem. Thermodyn. 31, 635 (1999). (http://dx.doi.org/10.1006/jcht.1998.0471)
  • 5. J. Z. Davalos, H. Flores, P. Jimenez, R. Notario, M. V. Roux, E. Juaristi, R. S. Hosmane, J. F. Liebman. J. Org. Chem. 64, 9328 (1999). (http://dx.doi.org/10.1021/jo990726h)
  • 6. M. V. Roux, P. Jimenez, J. Z. Davalos, R. Notario, E. Juaristi. J. Org. Chem. 66, 5343 (2001). (http://dx.doi.org/10.1021/jo001757b)
  • 7. E. Juaristi, R. Notario, M. V. Roux. Chem. Soc. Rev. 34, 437 (2005). (http://dx.doi.org/10.1039/b311507k)
  • 8. M. V. Roux, J. Z. Davalos, P. Jimenez, R. Notario, O. Castano, J. S. Chickos, W. Hanshaw, H. Zhao, N. Rath, J. F. Liebman, B. Farivar, A. Bashir-Hashemi. J. Org. Chem. 70, 5461 (2005). (http://dx.doi.org/10.1021/jo050471+)
  • 9. M. V. Roux, M. Temprado, R. Notario, C. Foces-Foces, V. N. Emel'yanenko, S. P. Verevkin. J. Phys. Chem. A 112, 7455 (2008). (http://dx.doi.org/10.1021/jp803370u)
  • 10. A. R. Katritzky, C. W. Rees (Eds.), Comprehensive Heterocyclic Chemistry, Pergamon Press, Oxford (1984).
  • 11. M. J. Cook. "Six-membered rings with more than one oxygen or sulphur atom", in Comprehensive Heterocyclic Chemistry, Vol. 3, A. R. Katritzky, C. W. Rees (Eds.), p. 943, Pergamon Press, Oxford (1984).
  • 12. E. Juaristi (Ed.). Conformational Behavior of Six-Membered Rings. Analysis, Dynamics, and Stereoelectronic Effects, VCH, New York (1995).
  • 13. M. B. Smith, J. March. March's Advanced Organic Chemistry, 5th ed., p. 172, John Wiley, New York (2001).
  • 14. P. C. B. Page, M. B. van Niel, J. C. Prodger. Tetrahedron 45, 7643 (1989) and refs. therein.
  • 15. E. Juaristi. Introduction to Stereochemistry and Conformational Analysis, Chap. 18, John Wiley, New York (1991).
  • 16. E. Juaristi, G. Cuevas. The Anomeric Effect, CRC, Boca Raton (1995) and refs. therein.
  • 17. J. B. Pedley, R. D. Naylor, S. P. Kirby. Thermochemical Data of Organic Compounds, 2nd ed., Chapman and Hall, London (1986).
  • 18. P. E. Eaton, T. W. Cole. J. Am. Chem. Soc. 86, 962 (1964). (http://dx.doi.org/10.1021/ja01059a072)
  • 19. B. D. Kybett, S. Carroll, P. Natalis, D. W. Bonnell, J. L. Margrave, J. L. Franklin. J. Am. Chem. Soc. 88, 626 (1966). (http://dx.doi.org/10.1021/ja00955a056)
  • 20. V. V. Diky, M. Frenkel, L. S. Karpushenkava. Thermochim. Acta 408, 115 (2003). (http://dx.doi.org/10.1016/S0040-6031(03)00318-6)
  • 21. A. Bashir-Hashemi, J. S. Chickos, W. Hanshaw, H. Zhao, B. S. Farivar, J. F. Liebman. Thermochim. Acta 424, 91 (2004). (http://dx.doi.org/10.1016/j.tca.2004.05.022)
  • 22. D. R. Kirklin, K. L. Churney, E. S. Domalski. J. Chem. Thermodyn. 21, 1105 (1989). (http://dx.doi.org/10.1016/0021-9614(89)90098-0)
  • 23. J. L. M. Abboud, P. Jimenez, M. V. Roux, C. Turrion, C. Lopez-Mardomingo. J. Chem. Thermodyn. 24, 1299 (1992). (http://dx.doi.org/10.1016/S0021-9614(05)80270-8)
  • 24. J. T. Bojarski, J. L. Mokrosz, H. J. Barton, M. H. Paluchowska. "Recent progress in barbituric acid chemistry", in Advances in Heterocyclic Chemistry, Vol. 38, A. R. Katritzky (Ed.), Academic Press, New York (1985) and refs. therein.
  • 25. A. von Baeyer. Ann. Chem. Pharm. 130, 129 (1864). (http://dx.doi.org/10.1002/jlac.18641300202)
  • 26. B. Levine (Ed.). Principles of Forensic Toxicology, 2nd ed., p. 173, AACC Press, Washington, DC (2003).
  • 27. M. Willow, G. A. R. Johnston. Int. Rev. Neurobiol. 24, 15 (1983). (http://dx.doi.org/10.1016/S0074-7742(08)60219-6)
  • 28. (a) T. V. Soldatova, G. Y. Kabo, A. A. Kozyro, M. L. Frenkel. Zh. Fiz. Khim. 64, 336 (1990);
  • 28. (b) T. V. Soldatova, G. Y. Kabo, A. A. Kozyro, M. L. Frenkel. Russ. J. Phys. Chem. 64, 177 (1990).
  • 29. M. P. Lemoult. Compt. Rend. 663 (1904).
  • 30. E. Fischer, F. Wrede. Sitzungsber. Dtsch. Akad. Wiss. Berlin. Kl. Math. Phys. Tech. 687 (1904).
  • 31. W. Zielenkiewicz, G. L. Perlovich, M. Wszelaka-Rylik. J. Therm. Anal. Calorim. 57, 225 (1999). (http://dx.doi.org/10.1023/A:1010179814511)
  • 32. B. Brunetti, V. Piacente. J. Chem. Eng. Data 44, 809 (1999). (http://dx.doi.org/10.1021/je980300k)
  • 33. F. H. Allen. Acta Crystallogr., Sect. B 58, 380 (2002). (http://dx.doi.org/10.1107/S0108768102003890)
  • 34. W. Bolton. Acta Crystallogr. 16, 166 (1963). (http://dx.doi.org/10.1107/S0365110X63000438)
  • 35. T. C. Lewis, D. A. Tocher, S. L. Price. Cryst. Growth Des. 4, 979 (2004). (http://dx.doi.org/10.1021/cg034209a)
  • 36. A. L. Spek. J. Appl. Crystallogr. 36, 7 (2003). (http://dx.doi.org/10.1107/S0021889802022112)
  • 37. F. Kohlbeck, E. M. Horl. J. Appl. Crystallogr. 9, 28 (1976). (http://dx.doi.org/10.1107/S0021889876010431)
  • 38. F. Raimondo, A. Pieretti, L. Gontrani, L. Bencivenni. Chem. Phys. 271, 293 (2001). (http://dx.doi.org/10.1016/S0301-0104(01)00440-2)
  • 39. S. Senthilkumar, P. Kolandaivel. J. Comput.-Aided Mol. Des. 16, 263 (2002). (http://dx.doi.org/10.1023/A:1020273219651)
  • 40. F. Zuccarello, G. Buemi, C. Gandolfo, A. Contino. Spectrochim. Acta A 59, 139 (2003). (http://dx.doi.org/10.1016/S1386-1425(02)00146-4)
  • 41. S. Ralhan, N. K. Ray. J. Mol. Struct. (Theochem) 634, 83 (2003). (http://dx.doi.org/10.1016/S0166-1280(03)00260-4)
  • 42. V. B. Delchev. J. Struct. Chem. 45, 570 (2004). (http://dx.doi.org/10.1007/s10947-005-0031-8)
  • 43. L. I. Daskalova, I. Binev. Int. J. Quantum Chem. 106, 1338 (2006). (http://dx.doi.org/10.1002/qua.20891)
  • 44. Y. Ren, Y. Guo, B. Li. Hainana Shifan Xueyuan Xuebao, Ziran Kexueban 20, 242 (2007) [CAN 148:214627].
  • 45. G. A. Jeffrey, S. Ghose, J. O. Warwicker. Acta Crystallogr. 14, 881 (1961). (http://dx.doi.org/10.1107/S0365110X61002539)
  • 46. A. R. Al-Karaghouli, B. Abdul-Wahab, E. Ajaj, S. Al-Asaff. Acta Crystallogr., Sect. B 33, 1655 (1977). (http://dx.doi.org/10.1107/S0567740877006839)
  • 47. G. J. Kabo. Personal communication (2007).
  • 48. Experimental DfHdegm values for the reference compounds used in isodesmic reaction (1), methane, -74.6 kJ mol1 has been taken from J. A. Manion. J. Phys. Chem. Ref. Data 31, 123 (2002); fHdegm value for urea, -235.5 kJ mol1, has been taken from ref. [49]; and DfHdegm value for acetylacetone, -358.9 kJ mol1, has been taken from ref. [50].
  • 49. H. Y. Afeefy, J. F. Liebman, S. E. Stein. Neutral Thermochemical Data in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P. J. Linstrom, W. G. Mallard (Eds.), National Institute of Standards and Technology, Gaithersburg, MD, June (2005) <http://webbook.nist.gov>.
  • 50. M. Temprado, M. V. Roux, P. Umnahanaut, H. Zhao, J. S. Chickos. J. Phys. Chem. B 109, 12590 (2005). (http://dx.doi.org/10.1021/jp0515131)