Pure Appl. Chem., 2009, Vol. 81, No. 10, pp. 1799-1828
http://dx.doi.org/10.1351/PAC-CON-08-09-24
Published online 2009-10-05
Force field for the atomistic simulation of the properties of hydrazine, organic hydrazine derivatives, and energetic hydrazinium ionic liquids
References
- 1. E. W. Schmidt. Hydrazine and Its Derivatives: Preparation, Properties, and Applications, 2nd ed. (2 volumes), John Wiley, New York (2001).
- 2. L. G. Cole, E. C. Gilbert. J. Am. Chem. Soc. 73, 5423 (1951). (http://dx.doi.org/10.1021/ja01155a120)
- 3. U.S. Environmental Protection Agency. Integrated Risk Information System (IRIS) on Hydrazine/Hydrazine Sulfate, National Center for Environmental Assessment, Office of Research and Development, Washington, DC (1999).
- 4. Health Council of the Netherlands. N-Methylhydrazine: Evaluation of the Carcinogenicity and Genotoxicity, The Hague, Health Council of the Netherlands (2002). Publication no. 2002/07OSH.
- 5. International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man: Some Aromatic Amines, Hydrazine and Related Substances, N-Nitroso Compounds and Miscellaneous Alkylating Agents, Vol. 4, World Health Organization, Lyon (1974).
- 6. "US missile destroys toxic tank on spy satellite", Nature 451, 1041 (2008). (http://dx.doi.org/10.1038/4511041d)
- 7. (a) V. Bombelli, M. Ford, T. Maree. Proc. 2nd Int. Conf. on Green Propellants for Space Propulsion, Calgari, Sardinia, Italy (78 June 2004). ESA SP-557, October 2004;
- 7. (b) E. W. Schmidt, E. J. Wucherer. Proc. 2nd Int. Conf. on Green Propellants for Space Propulsion, Calgari, Sardinia, Italy (78 June 2004), ESA SP-557, October 2004.
- 8. A. J. Brand, G. W. Drake. "Energetic hydrazinium salts", U.S. Patent 6218577, filed 16 July 1999, issued 17 April 2001.
- 9. (a) E. M. Cabaleiro-Lago, M. A. Rios. J. Phys. Chem. A 103, 6468 (1999); (http://dx.doi.org/10.1021/jp9913564)
- 9. (b) V. Dyczmons. J. Phys. Chem. A 104, 8263 (2000); (http://dx.doi.org/10.1021/jp0014059)
- 9. (c) X.-H. Ju, H.-M. Xiao. J. Mol. Struct. (Theochem) 588, 79 (2002). (http://dx.doi.org/10.1016/S0166-1280(02)00142-2)
- 10. Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT (2004).
- 11. (a) A. D. Becke. J. Chem. Phys. 98, 5648 (1993); (http://dx.doi.org/10.1063/1.464913)
- 11. (b) A. D. Becke. J. Chem. Phys. 98, 1372 (1993); (http://dx.doi.org/10.1063/1.464304)
- 11. (c) C. Lee, W. Yang, R. G. Parr. Phys. Rev. B 37, 785 (1988); (http://dx.doi.org/10.1103/PhysRevB.37.785)
- 11. (d) N. Godbout, D. R. Salahub, J. Andzelm, E. Wimmer. Can. J. Chem. 70, 560 (1992). (http://dx.doi.org/10.1139/v92-079)
- 12. NIST Computational Chemistry Comparison and Benchmark Database, R. D. Johnson III (Ed.), NIST Standard Reference Database Number 101 (Release 14 Sept 2006). <http://srdata.nist.gov/cccbdb>.
- 13. C. M. Breneman, K. B. Wiberg. J. Comp. Chem. 11, 361 (1990). (http://dx.doi.org/10.1002/jcc.540110311)
- 14. W. Damm, A. Frontera, J. Tirado-Rives, W. L. Jorgensen. J. Comp. Chem. 18, 1955 (1998). (http://dx.doi.org/10.1002/(SICI)1096-987X(199712)18:16<1955::AID-JCC1>3.0.CO;2-L)
- 15. (a) A. D. MacKerell Jr., J. Wiorkiewicz-Kuczera, M. Karplus. J. Am. Chem. Soc. 117, 11946 (1995); (http://dx.doi.org/10.1021/ja00153a017)
- 15. (b) N. Foloppe, A. D. MacKerell Jr. J. Comp. Chem. 21, 86 (2000); (http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G)
- 15. (c) A. D. MacKerell Jr., N. Banavali. J. Comp. Chem. 21, 105 (2000). (http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<105::AID-JCC3>3.0.CO;2-P)
- 16. J. N. Canongia Lopes, J. Deschamps, A. A. H. Padua. J. Phys. Chem. B 108, 2038 (2004). (http://dx.doi.org/10.1021/jp0362133)
- 17. L. Radom, W. J. Hehre, J. A. Pople. J. Am. Chem. Soc. 94, 2371 (1972). (http://dx.doi.org/10.1021/ja00762a030)
- 18. C. Cadena, E. J. Maginn. J. Phys. Chem. B 110, 18026 (2006). (http://dx.doi.org/10.1021/jp0629036)
- 19. L. Kale, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Philips, A. Shinozaki, K. Varadarajan, K. Schulten. J. Comp. Chem. 151, 283 (1999).
- 20. A. Z. Panagiotopoulos. Mol. Simul. 9, 1 (1992). (http://dx.doi.org/10.1080/08927029208048258)
- 21. (a) M. G. Martin, J. I. Siepmann. J. Phys. Chem. B 103, 4508 (1999); (http://dx.doi.org/10.1021/jp984742e)
- 21. (b) J. I. Siepmann, D. Frenkel. Mol. Phys. 75, 59 (1992). (http://dx.doi.org/10.1080/00268979200100061)
- 22. M. G. Martin, available from: <http://towhee.sourceforge.net>.
- 23. (a) R. C. Ahlert, G. L. Bauerle, J. V. Lecce. J. Chem. Eng. Data 7, 158 (1962); (http://dx.doi.org/10.1021/je60012a046)
- 23. (b) L. D. Barrick, G. W. Drake, H. L. Lochte. J. Am. Chem. Soc. 58, 160 (1936); (http://dx.doi.org/10.1021/ja01292a046)
- 23. (c) P. Walden, H. Hilgert. Z. Phys. Chem. 165A, 241 (1933).
- 24. R. C. Ahlert, C. J. Shimalla. J. Chem. Eng. Data 13, 108 (1968). (http://dx.doi.org/10.1021/je60036a031)
- 25. A. N. Kost, R. Sagitullin. J. Gen. Chem. USSR 33, 855 (1963).
- 26. In The Merck Index, S. Budavi (Ed.), p. 817, Merck, Whitehouse Station, NJ (1996).
- 27. D. W. Scott, G. D. Oliver, M. E. Gross, W. N. Hubbard, H. M. Huffman. J. Am. Chem. Soc. 71, 2293 (1949). (http://dx.doi.org/10.1021/ja01175a007)
- 28. In CRC Handbook of Chemistry and Physics, 88th ed., D. R. Lide (Ed.), Taylor and Francis, Boca Raton (2008).
- 29. (a) V. Majer, V. Svoboda. Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, p. 300, Blackwell Scientific, Oxford (1985);
- 29. (b) J. G. Aston, H. L. Finke, G. J. Janz, K. E. Russell. J. Am. Chem. Soc. 73, 1939 (1951). (http://dx.doi.org/10.1021/ja01149a010)
- 30. J. G. Aston, J. L. Wood, T. P. Zolki. J. Am. Chem. Soc. 75, 6202 (1953). (http://dx.doi.org/10.1021/ja01120a027)
- 31. (a) C. Cadena, Q. Zhao, R. Q. Snurr, E. J. Maginn. J. Phys. Chem. B 110, 2821 (2006); (http://dx.doi.org/10.1021/jp056235k)
- 31. (b) M. Lagache, P. Ungerer, A. Boutin, A. H. Fuchs. Phys. Chem. Chem. Phys. 3, 4333 (2001). (http://dx.doi.org/10.1039/b104150a)
- 32. L. V. Gurvich, I. V. Veyts, C. B. Alcock. Thermodynamic Properties of Individual Substances, 4th ed., Hemisphere Publishing, New York (1989).
- 33. (a) N. B. Wilding. Phys. Rev. E 52, 602 (1995); (http://dx.doi.org/10.1103/PhysRevE.52.602)
- 33. (b) J. A. Zollweg, G. W. Mulholland. J. Chem. Phys. 57, 1021 (1972). (http://dx.doi.org/10.1063/1.1678352)
- 34. (a) J. L. Haws, D. G. Harden. J. Spacecr. Rockets 2, 972 (1965); (http://dx.doi.org/10.2514/3.28327)
- 34. (b) L. F. Audrieth, B. Ackerson-Ogg. The Chemistry of Hydrazine, John Wiley, New York (1951).
- 35. (a) A. M. Ferrenberg, R. H. Swendsen. Phys. Rev. Lett. 61, 2635 (1988); (http://dx.doi.org/10.1103/PhysRevLett.61.2635)
- 35. (b) A. M. Ferrenberg, R. H. Swendsen. Phys. Rev. Lett. 63, 1195 (1989). (http://dx.doi.org/10.1103/PhysRevLett.63.1195)
- 36. O. A. Knight. Hydrocarbon Proc. Petr. Refiner. 41, 179 (1962).
- 37. D. Frenkel, B. Smit. Understanding Molecular Simulation, Academic Press, New York (1996).
- 38. F. Franks. Water, A Matrix of Life, 2nd ed., The Royal Society of Chemistry, Cambridge (2000).
- 39. W. Jiang, T. Yan, Y. Wang, G. A. Voth. J. Phys. Chem. B 112, 3121 (2008). (http://dx.doi.org/10.1021/jp710653g)
- 40. D. A. McQuarrie. Statistical Mechanics, University Science Books, Sausalito, CA (2000).
- 41. R. P. W. J. Struis, J. de Bleijser, J. C. Leyte. J. Phys. Chem. 91, 1639 (1987). (http://dx.doi.org/10.1021/j100290a069)
- 42. M. S. Kelkar, E. J. Maginn. J. Chem. Phys. 123, 224904 (2005). (http://dx.doi.org/10.1063/1.2131060)
- 43. M. S. Grigoriev, P. Moisy, C. Den Auwer, I. A. Charushnikova. Acta Crystallogr., Sect. E 61, i216 (2005). (http://dx.doi.org/10.1107/S1600536805029211)
- 44. O. de Bonn, A. Hammerl, T. M. Klapotke, P. Mayer, H. Piotrowski, H. Zewen. Z. Anorg. Allg. Chem. 627, 2011 (2001). (http://dx.doi.org/10.1002/1521-3749(200108)627:8<2011::AID-ZAAC2011>3.0.CO;2-G)
- 45. T. Hawkins. "Research and Development of Ionic Liquids at U.S. Air Force Research Laboratory Ionic Liquids R&D U.S. Air Force Research Laboratory" Project No. 5026, Task No. 0541, Air Force Research Laboratory, Edwards Air Force Base, CA (report date: April 2005).
- 46. S. J. Grabowski. Annu. Rep. Prog. Chem., Sect. C 102, 131 (2006).
- 47. D. M. Eike, J. F. Brennecke, E. J. Maginn. J. Chem. Phys. 122, 014115 (2005). (http://dx.doi.org/10.1063/1.1823371)
- 48. (a) T. Yan, C. J. Burnham, M. G. DelPopolo, G. A. Voth. J. Phys. Chem. B 108, 11877 (2004); (http://dx.doi.org/10.1021/jp047619y)
- 48. (b) B. L. Bhargava, S. Balasubramanian. J. Chem. Phys. 127, 114510 (2007). (http://dx.doi.org/10.1063/1.2772268)