Pure Appl. Chem., 2008, Vol. 80, No. 8, pp. 1799-1810
http://dx.doi.org/10.1351/pac200880081799
Catalytic metallodrugs
References
- 1. C. Harford, B. Sarkar. Acc. Chem. Res. 30, 123 (1997). (http://dx.doi.org/10.1021/ar9501535)
- 2. N. Camerman, A. Camerman, B. Sarkar. Can. J. Chem. 54, 1309 (1975). (http://dx.doi.org/10.1139/v76-185)
- 3. S.-J. Lau, T. P. A. Kruck, B. Sarkar. J. Biol. Chem. 249, 5878 (1974).
- 4. E. Kimoto, H. Tanaka, J. Gyotoku, F. Morishige, L. Pauling. Cancer Res. 43, 824 (1983).
- 5. Y. Jin, J. A. Cowan. J. Am. Chem. Soc. 128, 410 (2006). (http://dx.doi.org/10.1021/ja055272m)
- 6. N. H. Gokhale, J. A. Cowan. Chem. Commun. 5916 (2005). (http://dx.doi.org/10.1039/b511081e)
- 7. Y. Jin, J. A. Cowan. J. Biol. Inorg. Chem. 12, 637 (2007). (http://dx.doi.org/10.1007/s00775-007-0221-2)
- 8. M. Pitie, C. J. Burrows, B. Meunier. Nucleic Acids Res. 28, 4856 (2000). (http://dx.doi.org/10.1093/nar/28.24.4856)
- 9. C. C. Cheng, S. E. Rokita, C. J. Burrows. Angew. Chem. 105, 290 (1993) (http://dx.doi.org/10.1002/ange.19931050229)
- 10. E. L. Hegg, J. N. Burstyn. Inorg. Chem. 35, 7474 (1996). (http://dx.doi.org/10.1021/ic960384n)
- 11. D. A. Lutterman, P. K. L. Fu, C. Turro. J. Am. Chem. Soc. 128, 738 (2006). (http://dx.doi.org/10.1021/ja057620q)
- 12. D. A. Lutterman, N. N. Degtyareva, D. H. Johnston, J. C. Gallucci, J. L. Eglin, C. Turro. Inorg. Chem. 44, 5388 (2005). (http://dx.doi.org/10.1021/ic048377j)
- 13. L. F. Povirk, W. Wubker, W. Kohnlein, F. Hutchinson. Nucleic Acids Res. 4, 3573 (1977). (http://dx.doi.org/10.1093/nar/4.10.3573)
- 14. A. Sreedhara, J. D. Freed, J. A. Cowan. J. Am. Chem. Soc. 122, 8814 (2000). (http://dx.doi.org/10.1021/ja994411v)
- 15. H. Sugiyama, Y. Tsutsumi, K. Fujimoto, I. Saito. J. Am. Chem. Soc. 115, 4443 (1993). (http://dx.doi.org/10.1021/ja00064a004)
- 16. J. Suh. Acc. Chem. Res. 36, 562 (2003). (http://dx.doi.org/10.1021/ar020037j)
- 17. D. F. Shullenberger, E. C. Long. Bioorg. Med. Chem. Lett. 3, 333 (1993). (http://dx.doi.org/10.1016/S0960-894X(01)80904-5)
- 18. D. P. Mack, P. B. Dervan. J. Am. Chem. Soc. 112, 4604 (1990). (http://dx.doi.org/10.1021/ja00167a102)
- 19. D. P. Mack, P. B. Dervan. Biochemistry 31, 9399 (1992). (http://dx.doi.org/10.1021/bi00154a011)
- 20. M. M. Meijler, O. Zelenko, D. S. Sigman. J. Am. Chem. Soc. 119, 1135 (1997). (http://dx.doi.org/10.1021/ja962409n)
- 21. O. Iranzo, T. Elmer, J. P. Richard, J. R. Morrow. Inorg. Chem. 42, 7737 (2003). (http://dx.doi.org/10.1021/ic030131b)
- 22. A. Sreedhara, A. Patwardhan, J. A. Cowan. Chem. Commun. 1147 (1999). (http://dx.doi.org/10.1039/a901140d)
- 23. A. Sreedhara, J. A. Cowan. J. Biol. Inorg. Chem. 6, 166 (2001). (http://dx.doi.org/10.1007/s007750000187)
- 24. I. J. Brittain, X. Huang, E. C. Long. Biochemistry 37, 12113 (1998). (http://dx.doi.org/10.1021/bi9806605)
- 25. D. W. Celander, T. R. Cech. Biochemistry 29, 1355 (1990). (http://dx.doi.org/10.1021/bi00458a001)
- 26. H. H. Thorp. Chem. Biol. 7, R33 (2000). (http://dx.doi.org/10.1016/S1074-5521(00)00080-6)
- 27. J. A. Cowan. Curr. Opin. Chem. Biol. 5, 634 (2001). (http://dx.doi.org/10.1016/S1367-5931(01)00259-9)
- 28. A. Patwardhan, J. A. Cowan. Chem. Commun. 1490 (2001). (http://dx.doi.org/10.1039/b103789g)
- 29. Y. Jin, J. A. Cowan. J. Am. Chem. Soc. 127, 8408 (2005). (http://dx.doi.org/10.1021/ja0503985)
- 30. A. Sreedhara, J. A. Cowan. Chem. Commun. 1737 (1998). (http://dx.doi.org/10.1039/a802903b)
- 31. P. Travascio, D. Sen, A. J. Bennet. Can. J. Chem. 84, 613 (2006). (http://dx.doi.org/10.1139/V06-057)
- 32. M. Eisenstein. Nat. Meth. 3, 424 (2006). (http://dx.doi.org/10.1038/nmeth0606-424b)
- 33. D. M. Brackett, T. Dieckmann. ChemBioChem 7, 839 (2006). (http://dx.doi.org/10.1002/cbic.200500538)
- 34. D. D. Young A. Deiters. Bioorg. Med. Chem. Lett. 16, 2658 (2006). (http://dx.doi.org/10.1016/j.bmcl.2006.02.034)
- 35. N. Paul, G. Springsteen, G. F. Joyce. Chem. Biol. 13, 329 (2006). (http://dx.doi.org/10.1016/j.chembiol.2006.01.007)
- 36. R. R. Breaker, G. F. Joyce. Chem. Biol. 1, 223 (1994). (http://dx.doi.org/10.1016/1074-5521(94)90014-0)
- 37. A. Sreedhara, Y. Li, R. R. Breaker. J. Am. Chem. Soc. 126, 3454 (2004). (http://dx.doi.org/10.1021/ja039713i)
- 38. C. S. Chow, J. K. Barton. J. Am. Chem. Soc. 112, 2839 (1990). (http://dx.doi.org/10.1021/ja00163a076)
- 39. B. J. Carter, E. Vroom, E. C. Long, G. A. Marel, J. H. Boom, S. M. Hecht, Proc. Natl. Acad. Sci. USA 87, 9373 (1990). (http://dx.doi.org/10.1073/pnas.87.23.9373)
- 40. J. A. Cowan, T. Ohyama, D. Wang, K. Natarajan. Nucleic Acids Res. 28, 2935 (2000). (http://dx.doi.org/10.1093/nar/28.15.2935)
- 41. S. H. Yoo, B. J. Lee, H. Kim, J. Suh. J. Am. Chem. Soc. 127, 9593 (2005). (http://dx.doi.org/10.1021/ja052191h)
- 42. S. A. Datwyler, C. F. Meares. Trends Biochem. Sci. 25, 408 (2000). (http://dx.doi.org/10.1016/S0968-0004(00)01652-2)
- 43. N. H. Gokhale, J. A. Cowan. J. Biol. Inorg. Chem. 11, 937 (2006). (http://dx.doi.org/10.1007/s00775-006-0145-2)
- 44. V. Bourdeau, G. Ferbeyre, M. Pageau, B. Paquin, R. Cedergren. Nucleic Acids Res. 27, 4457 (1999). (http://dx.doi.org/10.1093/nar/27.22.4457)
- 45. C. Chen, J. A. Cowan. Chem. Commun. 196 (2002). (http://dx.doi.org/10.1039/b108439a)
- 46. K. Harada, S. S. Martin, R. Tan, A. D. Frankel. Proc. Natl. Acad. Sci. USA 94, 11887 (1997). (http://dx.doi.org/10.1073/pnas.94.22.11887)
- 47. L. O. Rodriguez, S. M. Hecht. Biochem. Biophys. Res. Commun. 104, 1470 (1982). (http://dx.doi.org/10.1016/0006-291X(82)91416-4)
- 48. L. F. Povirk, M. J. F. Austin. Mutat. Res. 257, 127 (1991).
- 49. J. Stubbe, J. W. Kozarich. Chem. Rev. 87, 1107 (1987). (http://dx.doi.org/10.1021/cr00081a011)
- 50. R. P. Hertzberg, P. B. Dervan. Biochemistry 23, 3934 (1984). (http://dx.doi.org/10.1021/bi00312a022)
- 51. Heart Disease and Stroke Statistics, 2008 Update, American Heart Association (<http://www.americanheart.org>).
- 52. N. Inguimbert, P. Coric, H. Poras, H. Meudal, F. Teffot, M.-C. Fournie-Zaluski, B. P. Roques. J. Med. Chem. 45, 1477 (2002). (http://dx.doi.org/10.1021/jm0005454)
- 53. B. Cuenoud, T. M. Tarasow, A. Schepartz. Tetrahedron Lett. 33, 895 (1992). (http://dx.doi.org/10.1016/S0040-4039(00)91569-7)
- 54. M. Khossravi, R. T. Borchardt. Pharm. Res. 17, 851 (2000). (http://dx.doi.org/10.1023/A:1007564410491)
- 55. Y. Jin, J. A. Cowan. J. Am. Chem. Soc. 127, 8408 (2005). (http://dx.doi.org/10.1021/ja0503985)
- 56. D. W. Margerum, W. M. Scheper, M. R. McDonald, F. C. Fredericks, L. Wang, H. D. Lee. Bioinorg. Chem. Copper 213 (1993).
- 57. B. J. Green, T. M. Tesfai, Y. Xie, D. W. Margerum. Inorg. Chem. 43, 1463 (2004). (http://dx.doi.org/10.1021/ic035034x)
- 58. T. M. Tesfai, B. J. Green, D. W. Margerum. Inorg. Chem. 43, 6726 (2004). (http://dx.doi.org/10.1021/ic049338a)
- 59. S. K. Burke, Y. Xu, D. W. Margerum. Inorg. Chem. 42, 5807 (2003). (http://dx.doi.org/10.1021/ic0345774)
- 60. M. R. McDonald, F. C. Fredericks, D. W. Margerum. Inorg. Chem. 36, 3119 (1997). (http://dx.doi.org/10.1021/ic9608713)
- 61. J. L. Battiste, H. Mao, N. S. Rao, R. Tan, D. R. Muhandiram, L. E. Kay, A. D. Frankel, J. R. Williamson. Science 273, 1547 (1996). (http://dx.doi.org/10.1126/science.273.5281.1547)
- 62. R. Natesh, S. L. U. Schwager, E. D. Sturrock, K. R. Acharya. Nature 421, 551 (2003). (http://dx.doi.org/10.1038/nature01370)