Pure Appl. Chem., 2008, Vol. 80, No. 6, pp. 1195-1210
http://dx.doi.org/10.1351/pac200880061195
Capabilities of chemical simulation methods in the elucidation of structure and dynamics of solutions
References
- 1. H. Ohtaki, T. Radnai. Chem. Rev. 93, 1157 (1993). (http://dx.doi.org/10.1021/cr00019a014)
- 2. G. W. Neilson, J. E. Enderby. The Coordination of Metal Aquaions, Vol. 34, pp. 195-218, Academic Press, Orlando (1989).
- 3. L. Helm, A. E. Merbach. Chem. Rev. 105, 1923 (2005). (http://dx.doi.org/10.1021/cr030726o)
- 4. M. P. Allen, D. J. Tildesley. Computer Simulation of Liquids, Oxford Science Publications, Oxford (1990).
- 5. McQuarrie. Statistical Mechanics, Harper & Row, New York (1976).
- 6. R. P. H. Gasser, W. G. Richards. An Introduction to Statistical Thermodynamics, World Scientific, Singapore (1995).
- 7. A. J. Stone. The Theory of Intermolecular Forces, Oxford University Press, Oxford (1995).
- 8. A. R. Leach. Molecular Modelling, 2nd ed., Prentice-Hall, Essex (2001).
- 9. F. Jensen. Introduction to Computational Chemistry, John Wiley, Chichester (1999).
- 10. C. J. Cramer. Essentials of Computational Chemistry, John Wiley, West Sussex (2002).
- 11. H. Ohtaki. Chem. Monthly 132, 1237 (2001).
- 12. G. W. Neilson, A. K. Adya. Ann. Rep. Chem., Sect. C 93, 101 (1996).
- 13. G. W. Neilson, P. E. Mason, S. Ramos, D. Sullivan. Philos. Trans. R. Soc. London, Ser. A 359, 1575 (2001).
- 14. L. Helm, A. E. Merbach. Coord. Chem. Rev. 187, 151 (1999). (http://dx.doi.org/10.1016/S0010-8545(99)90232-1)
- 15. A. J. Lock, S. Woutersen, H. J. Bakker. Femtochemistry and Femtobiology, World Scientific, Singapore (2001).
- 16. P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L. A. Naslund, T. K. Hirsch, L. Ojamae, P. Glatzel, L. G. M. Pettersson, A. Nilsson. Science 304, 955 (2004). (http://dx.doi.org/10.1126/science.1096205)
- 17. J. B. R. Bucher, J. Stauber. Chem. Phys. Lett. 306, 57 (1999). (http://dx.doi.org/10.1016/S0009-2614(99)00455-8)
- 18. D. Frenkel, B. Smit. Understanding Molecular Simulation, Academic Press, San Diego (2002).
- 19. R. J. Sadus. Molecular Simulation of Fluids, Elsevier Science, Amsterdam (1999).
- 20. C. J. Cramer, D. G. Truhlar. Chem. Rev. 99, 2161(1999). (http://dx.doi.org/10.1021/cr960149m)
- 21. F. P. Rotzinger. Chem. Rev. 105, 2003 (2005). (http://dx.doi.org/10.1021/cr030715v)
- 22. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller. J. Chem. Phys. 21, 1087 (1953). (http://dx.doi.org/10.1063/1.1699114)
- 23. D. A. Pearlman, D. A. Case, J. W. Caldwell, W. Ross, T. Cheatham, S. DeBolt, D. Ferguson, G. Seibel, P. Kollman. Comp. Phys. Commun. 91, 1 (1995). (http://dx.doi.org/10.1016/0010-4655(95)00041-D)
- 24. A. D. MacKerell, B. Brooks, C. L. Brooks (III), L. Nilsson, B. Roux, Y. Won, M. Karplus. "CHARMM: The Energy Function and Its Parameterization with an Overview of the Program", in The Encyclopedia of Computational Chemistry, John Wiley, Chichester (1998).
- 25. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, M. Karplus. J. Comp. Chem. 4, 187 (1983). (http://dx.doi.org/10.1002/jcc.540040211)
- 26. E. Schrodinger. Ann. Phys. 79, 361 (1926). (http://dx.doi.org/10.1002/andp.19263840404)
- 27. M. Nooijen. Phys. Rev. Lett. 84, 2108 (2000). (http://dx.doi.org/10.1103/PhysRevLett.84.2108)
- 28. H. Nakatsuji. J. Chem. Phys. 113, 2949 (2000). (http://dx.doi.org/10.1063/1.1287275)
- 29. L. Thogersen, J. Olsen, D. Yeager, P. Jorgensen, P. Salek, T. Helgaker. J. Chem. Phys. 121, 16 (2004). (http://dx.doi.org/10.1063/1.1755673)
- 30. R. Car, M. Parinello. Phys. Rev. Lett. 55, 2471 (1985). (http://dx.doi.org/10.1103/PhysRevLett.55.2471)
- 31. J. P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996). (http://dx.doi.org/10.1103/PhysRevLett.77.3865)
- 32. J. P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 78, 1396 (1997). (http://dx.doi.org/10.1103/PhysRevLett.78.1396)
- 33. A. D. Becke. Phys. Rev. A 38, 3098 (1988). (http://dx.doi.org/10.1103/PhysRevA.38.3098)
- 34. A. Pasquarello, I. Petri, P. S. Salmon, O. Parisel, R. Car, E. Toth, D. H. Powell, H. E. Fischer, L. Helm, A. Merbach. Science 291, 856 (2001). (http://dx.doi.org/10.1126/science.291.5505.856)
- 35. I. Bako, J. Hutter, G. Palinkas. J. Chem. Phys. 117, 9838 (2002). (http://dx.doi.org/10.1063/1.1517039)
- 36. W. Kutzelnigg. Density Functional Theory (DFT) and ab initio Quantum Chemistry (AIQC): Story of a Difficult Partnership, G. Maroulis, T. Simos (Eds.), p. 23, International Science Publishers (VSP), Leiden (2006).
- 37. D. J. Harris, J. P. Brodholt, D. M. Sherman. J. Phys. Chem. B 107, 9056 (2003). (http://dx.doi.org/10.1021/jp027772x)
- 38. R. J. Bartlett, I. V. Schweigert, V. F. Lotrich. J. Mol. Struct. (Theochem) 764, 33 (2006). (http://dx.doi.org/10.1016/j.theochem.2005.12.017)
- 39. R. J. Bartlett, V. F. Lotrich, I. V. Schweigert. J. Chem. Phys. 123, 062205 (2005). (http://dx.doi.org/10.1063/1.1904585)
- 40. A. D. Becke. J. Chem. Phys. 98, 5648 (1993). (http://dx.doi.org/10.1063/1.464913)
- 41. H. M. Senn, W. Thiel. Curr. Opin. Chem. Biol. 11, 182 (2007). (http://dx.doi.org/10.1016/j.cbpa.2007.01.684)
- 42. H. Lin, D. G. Truhlar. Theor. Chem. Acc. 117, 185 (2007). (http://dx.doi.org/10.1007/s00214-006-0143-z)
- 43. A. Warshel, M. Levitt. J. Mol. Biol. 103, 227 (1976). (http://dx.doi.org/10.1016/0022-2836(76)90311-9)
- 44. M. J. Field, P. A. Bash, M. Karplus. J. Comput. Chem. 11, 700 (1990). (http://dx.doi.org/10.1002/jcc.540110605)
- 45. J. Gao. J. Am. Chem. Soc. 115, 2930 (1993). (http://dx.doi.org/10.1021/ja00060a047)
- 46. D. Bakowies, W. Thiel. J. Phys. Chem. 100, 10580 (1996). (http://dx.doi.org/10.1021/jp9536514)
- 47. D. Xenides, B. R. Randolf, B. M. Rode. J. Chem. Phys. 122, 4506 (2005). (http://dx.doi.org/10.1063/1.1888465)
- 48. D. Xenides, B. R. Randolf, B. M. Rode. J. Mol. Liq. 123, 61 (2006). (http://dx.doi.org/10.1016/j.molliq.2005.06.002)
- 49. C. F. Schwenk, A. Tongraar, B. M. Rode. J. Mol. Liq. 110, 105 (2004). (http://dx.doi.org/10.1016/j.molliq.2003.09.016)
- 50. B. M. Rode, C. F. Schwenk, T. S. Hofer, B. R. Randolf. Coord. Chem. Rev. 249, 2993 (2005). (http://dx.doi.org/10.1016/j.ccr.2005.03.032)
- 51. C. F. Schwenk, B. M. Rode. J. Am. Chem. Soc. 126, 12786 (2004). (http://dx.doi.org/10.1021/ja046784o)
- 52. B. M. Rode, T. S. Hofer, B. R. Randolf, C. F. Schwenk, D. Xenides, V. Vchirawongkwin. Theor. Chem. Acc. 115, 77 (2006). (http://dx.doi.org/10.1007/s00214-005-0049-1)
- 53. A. Laio, J. VandeVondele, U. Rothlisberger. J. Chem. Phys. 116, 6941 (2002). (http://dx.doi.org/10.1063/1.1462041)
- 54. E. Voloshina, N. Gaston, B. Paulus. J. Chem. Phys. 126, 134115 (2007). (http://dx.doi.org/10.1063/1.2715555)
- 55. C. F. Schwenk, T. S. Hofer, B. M. Rode. J. Phys. Chem. A 108, 1509 (2004). (http://dx.doi.org/10.1021/jp037179v)
- 56. P. R. Smirnov, V. N. Trostin. Russ. J. Phys. Chem. 69, 1097 (1995).
- 57. T. S. Hofer, H. T. Tran, C. F. Schwenk, B. M. Rode. J. Comput. Chem. 25, 211 (2004). (http://dx.doi.org/10.1002/jcc.10374)
- 58. A. Tongraar, B. M. Rode. Chem. Phys. Lett. 409, 304 (2005). (http://dx.doi.org/10.1016/j.cplett.2005.04.062)
- 59. C. F. Schwenk, H. H. Loeffler, B. M. Rode. Chem. Phys. Lett. 349, 99 (2001). (http://dx.doi.org/10.1016/S0009-2614(01)01188-5)
- 60. T. S. Hofer, B. R. Randolf, B. M. Rode. J. Phys. Chem. B 110, 20409 (2006). (http://dx.doi.org/10.1021/jp0638033)
- 61. T. S. Hofer, B. M. Rode, B. R. Randolf. Chem. Phys. 312, 81 (2005). (http://dx.doi.org/10.1016/j.chemphys.2004.11.023)
- 62. R. Armunanto, C. F. Schwenk, B. M. Rode. J. Phys. Chem. A 107, 3132 (2003). (http://dx.doi.org/10.1021/jp027769d)
- 63. R. Armunanto, C. F. Schwenk, H. T. Tran, B. M. Rode. J. Am. Chem. Soc. 126, 2582 (2004). (http://dx.doi.org/10.1021/ja037340f)
- 64. C. Kritayakornupong, K. Plankensteiner, B. M. Rode. Chem. Phys. Lett. 371, 438 (2003). (http://dx.doi.org/10.1016/S0009-2614(03)00301-4)
- 65. T. S. Hofer, A. B. Pribil, B. R. Randolf, B. M. Rode. J. Am. Chem. Soc. 127, 14231 (2005). (http://dx.doi.org/10.1021/ja052700f)
- 66. M. Q. Fatmi, T. S. Hofer, B. R. Randolf, B. M. Rode. J. Chem. Phys. 123, 4514 (2005). (http://dx.doi.org/10.1063/1.1996575)
- 67. T. S. Hofer, B. M. Rode. J. Chem. Phys. 121, 6406 (2004). (http://dx.doi.org/10.1063/1.1785781)
- 68. C. F. Schwenk, B. M. Rode. ChemPhysChem 4, 931 (2003). (http://dx.doi.org/10.1002/cphc.200300659)
- 69. C. F. Schwenk, B. M. Rode. J. Chem. Phys. 119, 9523 (2003). (http://dx.doi.org/10.1063/1.1614224)
- 70. I. Persson, P. Persson, M. Sandstrom, A.-S. Ullstrom. J. Chem. Soc., Dalton Trans. 7, 1256 (2002). (http://dx.doi.org/10.1039/b200698g)
- 71. C. Kritayakornupong, K. Plankensteiner, B. M. Rode. ChemPhysChem 5, 1499 (2004). (http://dx.doi.org/10.1002/cphc.200400019)
- 72. C. F. Schwenk, T. S. Hofer, B. R. Randolf, B. M. Rode. Phys. Chem. Chem. Phys. 7, 1669 (2005). (http://dx.doi.org/10.1039/b419072f)
- 73. M. Q. Fatmi, T. S. Hofer, B. R. Randolf, B. M. Rode. Phys. Chem. Chem. Phys. 8, 1675 (2006). (http://dx.doi.org/10.1039/b518223a)
- 74. M. Q. Fatmi, T. S. Hofer, B. R. Randolf, B. M. Rode. J. Phys. Chem. B 111, 151 (2007). (http://dx.doi.org/10.1021/jp0654213)
- 75. D. H. Powell, L. Helm, A. E. Merbach. J. Chem. Phys. 95, 9258 (1991). (http://dx.doi.org/10.1063/1.461206)
- 76. P. S. Salmon, M. C. Bellissent-Funel, G. J. Herdman. J. Phys. Condens. Matter 2, 4297 (1990). (http://dx.doi.org/10.1088/0953-8984/2/18/027)
- 77. A. Tongraar, K. Sagarik, B. M. Rode. Phys. Chem. Chem. Phys. 4, 628 (2002). (http://dx.doi.org/10.1039/b107786d)
- 78. R. Armunanto, C. F. Schwenk, B. R. Randolf, B. M. Rode. Chem. Phys. Lett. 388, 395 (2004). (http://dx.doi.org/10.1016/j.cplett.2004.03.035)
- 79. R. Armunanto, C. F. Schwenk, B. M. Rode. J. Am. Chem. Soc. 126, 9934 (2004). (http://dx.doi.org/10.1021/ja031740l)
- 80. T. S. Hofer, B. R. Randolf, S. A. A. Shah, B. M. Rode, I. Persson. Chem. Phys. Lett. 445, 193 (2007). (http://dx.doi.org/10.1016/j.cplett.2007.08.009)
- 81. J. Purans, B. Fourest, C. Cannes, V. Sladkov, F. David, L. Venault, M. Lecomte. J. Phys. Chem. B 109, 11074 (2005). (http://dx.doi.org/10.1021/jp045489n)
- 82. J. M. Martinez, F. Torrico, R. R. Pappalardo, E. S. Marcos. J. Phys. Chem. A 108, 15851 (2004).
- 83. J. Rosdahl, I. Persson, L. Kloo, K. Stahl. Inorg. Chem. A 357, 2624 (2004). (http://dx.doi.org/10.1016/j.ica.2004.03.010)
- 84. M. Yizhak. Ion Properties, Marcel Dekker, New York (1997).
- 85. R. S. Mulliken. J. Chem. Phys. 23, 1833 (1955). (http://dx.doi.org/10.1063/1.1740588)
- 86. P. Mason, J. Cruickshank, G. Neilson, P. Buchanan. Phys. Chem. Chem. Phys. 5, 4690 (2003).
- 87. G. W. Neilson, D. Schiooberg, W. Luck. Chem. Phys. Lett. 122, 475 (1985). (http://dx.doi.org/10.1016/0009-2614(85)87249-3)
- 88. G. Johansson, H. Wakita. Inorg. Chem. 24, 3047 (1985). (http://dx.doi.org/10.1021/ic00213a035)
- 89. V. Vchirawongkwin, I. Persson, B. M. Rode. J. Phys. Chem. B 111, 4150 (2007). (http://dx.doi.org/10.1021/jp0702402)
- 90. V. Vchirawongkwin, B. M. Rode. J. Phys. Chem. 10, 1016 (2007).