Pure Appl. Chem., 2008, Vol. 80, No. 5, pp. 913-927
http://dx.doi.org/10.1351/pac200880050913
New preparative methods for allylic boronates and their application in stereoselective catalytic allylborations
References
- 1. (a). S. E. Denmark, N. G. Almstead. In Modern Carbonyl Chemistry, J. Otera, (Ed.), Chap. 10, pp. 299-402, Wiley-VCH, Weinheim, Germany (2000);
- 1. (b). S. R. Chemler, W. R. Roush. In Modern Carbonyl Chemistry, J. Otera, (Ed.), Chap. 11, pp. 403-490, Wiley-VCH, Weinheim, Germany (2000).
- 2. S. E. Denmark, J. Fu. Chem. Rev. 103, 2763 (2003). (http://dx.doi.org/10.1021/cr020050h)
- 3. (a). J. W. J. Kennedy, D. G. Hall. In Boronic Acids, D. G. Hall (Ed.), Chap. 6, pp. 241-277, Wiley-VCH, Weinheim, Germany (2005);
- 3. (b). H. Lachance, D. G. Hall. Org. React. (2008). In press.
- 4. (a). B. M. Mikhailov, Y. N. Bubnov. Izv. Akad. Nauk. SSSR, Ser. Khim. 1874 (1964);
- 4. (b). B. M. Mikhailov, Y. N. Bubnov. Chem. Abstr. 62, 11840e (1965).
- 5. E. Favre, M. C. Gaudemar. C. R. Hebd. Seances Acad. Sci. Paris 263, C 1543 (1966).
- 6. (a). R. W. Hoffmann, H.-J. Zeiss. Angew. Chem., Int. Ed. Engl. 18, 306 (1979); (http://dx.doi.org/10.1002/anie.197903061)
- 6. (b). R. W. Hoffmann, H.-J. Zeiss. J. Org. Chem. 46, 1309 (1981). (http://dx.doi.org/10.1021/jo00320a015)
- 7. (a). H. C. Brown, P. K. Jadhav. J. Am. Chem. Soc. 105, 2092 (1983); (http://dx.doi.org/10.1021/ja00345a085)
- 7. (b). H. C. Brown, K. S. Bhat. J. Am. Chem. Soc. 108, 293 (1986); (http://dx.doi.org/10.1021/ja00262a017)
- 7. (c). P. V. Ramachandran. Aldrichim. Acta 35, 23 (2002).
- 8. (a). J. Garcia, B. Kim, S. Masamune. J. Org. Chem. 52, 4831 (1987); (http://dx.doi.org/10.1021/jo00230a043)
- 8. (b). R. P. Short, S. Masamune. J. Am. Chem. Soc. 111, 1892 (1989). (http://dx.doi.org/10.1021/ja00187a061)
- 9. (a). E. J. Corey, C.-M. Yu, S. S. Kim. J. Am. Chem. Soc. 111, 5495 (1989); (http://dx.doi.org/10.1021/ja00196a082)
- 9. (b). E. J. Corey, C.-M. Yu, D.-H. Lee. J. Am. Chem. Soc. 112, 878 (1990). (http://dx.doi.org/10.1021/ja00158a064)
- 10. (a). W. R. Roush, A. E. Walts, L. K. Hoong. J. Am. Chem. Soc. 107, 8186 (1985); (http://dx.doi.org/10.1021/ja00312a062)
- 10. (b). W. R. Roush, K. Ando, D. B. Powers, A. D. Palkowitz, R. L. Halterman. J. Am. Chem. Soc. 112, 6339 (1990). (http://dx.doi.org/10.1021/ja00173a023)
- 11. (a). C.-H. Burgos, E. Canales, K. Matos, J. A. Soderquist. J. Am. Chem. Soc. 127, 8044 (2005); (http://dx.doi.org/10.1021/ja043612i)
- 11. (b). C. Lai, J. A. Soderquist. Org. Lett. 7, 799 (2005); (http://dx.doi.org/10.1021/ol0476164)
- 11. (c). E. Canales, K. G. Prasad, J. A. Soderquist. J. Am. Chem. Soc. 127, 11572 (2005). (http://dx.doi.org/10.1021/ja053865r)
- 12. S. E. Denmark, E. J. Weber. Helv. Chim. Acta 66, 1655 (1983). (http://dx.doi.org/10.1002/hlca.19830660604)
- 13. (a). Y. Li, K. N. Houk. J. Am. Chem. Soc. 111, 1236 (1989); (http://dx.doi.org/10.1021/ja00186a011)
- 13. (b). C. Gennari, E. Fioravanzo, A. Bernardi, A. Vulpetti. Tetrahedron 50, 8815 (1994); (http://dx.doi.org/10.1016/S0040-4020(01)85355-2)
- 13. (c). A. Vulpetti, M. Gardner, C. Gennari, A. Bernardi, J. M. Goodman, I. Paterson. J. Org. Chem. 58, 1711 (1993); (http://dx.doi.org/10.1021/jo00059a019)
- 13. (d). K. Omoto, H. Fujimoto. J. Org. Chem. 63, 8331 (1998); (http://dx.doi.org/10.1021/jo981190n)
- 13. (e). J. J. Gajewski, W. Bocian, N. L. Brichford, J. L. Henderson. J. Org. Chem. 67, 4236 (2002). (http://dx.doi.org/10.1021/jo0164002)
- 14. The Type III reagents, not illustrated in Fig. 2, are stereoconvergent reagents that react via a six-membered cyclic transition state like Type I reagents, however, by providing the same diastereomeric product regardless of the geometry of the g-substituted allylic metal reagent. Thus, these reagents, exemplified by allylic chromium species, undergo isomerization of the Z-alkene to the E-isomer prior to the carbonyl addition [1a].
- 15. A. J. Pratt, E. J. Thomas. J. Chem. Soc., Chem. Commun. 1115 (1982). (http://dx.doi.org/10.1039/c39820001115)
- 16. (a). J. W. J. Kennedy, D. G. Hall. J. Am. Chem. Soc. 124, 898 (2002); (http://dx.doi.org/10.1021/ja016391e)
- 16. (b). N. Zhu, D. G. Hall. J. Org. Chem. 68, 6066 (2003). (http://dx.doi.org/10.1021/jo034465u)
- 17. J. W. J. Kennedy, D. G. Hall. J. Am. Chem. Soc. 124, 11586 (2002). (http://dx.doi.org/10.1021/ja027453j)
- 18. T. Ishiyama, T-a. Ahiko, N. Miyaura. J. Am. Chem. Soc. 124, 12414 (2002).
- 19. V. Rauniyar, D. G. Hall. J. Am. Chem. Soc. 126, 4518 (2004). (http://dx.doi.org/10.1021/ja049446w)
- 20. H. C. Brown, U. S. Racherla, P. J. Pellechia. J. Org. Chem. 55, 1868 (1990). (http://dx.doi.org/10.1021/jo00293a036)
- 21. J. W. J. Kennedy, D. G. Hall. J. Org. Chem. 69, 4412 (2004). (http://dx.doi.org/10.1021/jo049773m)
- 22. (a). S.-H. Yu, M. J. Ferguson, R. McDonald, D. G. Hall. J. Am. Chem. Soc. 127, 12808 (2005); (http://dx.doi.org/10.1021/ja054171l)
- 22. (b). T. Elford, S.-H. Yu, Y. Arimura, D. G. Hall. J. Org. Chem. 72, 1276 (2007). (http://dx.doi.org/10.1021/jo062151b)
- 23. (a). H. Lachance, X. Lu, M. Gravel, D. G. Hall. J. Am. Chem. Soc. 125, 10160 (2003); (http://dx.doi.org/10.1021/ja036807j)
- 23. (b). M. Gravel, H. Lachance, X. Lu, D. G. Hall. Synthesis 1290 (2004).
- 24. (a). R. W. Hoffmann, T. Herold. Angew. Chem., Int. Ed. Engl. 18, 768 (1978);
- 24. (b). T. Herold, U. Schrott, R. W. Hoffmann. Chem. Ber. 111, 359 (1981). (http://dx.doi.org/10.1002/cber.19811140138)
- 25. (a). P. M. Pihko. Angew. Chem., Int. Ed. 43, 2062 (2004); (http://dx.doi.org/10.1002/anie.200301732)
- 25. (b). C. Bolm, T. Rantanen, I. Schiffers, L. Zani. Angew. Chem., Int. Ed. 44, 1758 (2005). (http://dx.doi.org/10.1002/anie.200500154)
- 26. H. Yamamoto, K. Futatsugi. Angew. Chem., Int. Ed. 44, 1924 (2005). (http://dx.doi.org/10.1002/anie.200460394)
- 27. (a). K. Ishihara, M. Kaneeda, H. Yamamoto. J. Am. Chem. Soc. 116, 11179 (1994); (http://dx.doi.org/10.1021/ja00103a052)
- 27. (b). S. Nakamura, M. Kaneeda, K. Ishihara, H. Yamamoto. J. Am. Chem. Soc. 122, 8120 (2000); (http://dx.doi.org/10.1021/ja001164i)
- 27. (c). K. Ishihara, S. Nakamura, M. Kaneeda, H. Yamamoto. J. Am. Chem. Soc. 118, 12854 (1996); (http://dx.doi.org/10.1021/ja962414r)
- 27. (d). K. Ishihara, S. Nakamura, H. Yamamoto. J. Org. Chem. 63, 6444 (1998); (http://dx.doi.org/10.1021/jo9812936)
- 27. (e). K. Ishihara, D. Nakashima, Y. Hiraiwa, H. Yamamoto. J. Am. Chem. Soc. 125, 24 (2003). (http://dx.doi.org/10.1021/ja021000x)
- 28. V. Rauniyar, D. G. Hall. Angew. Chem., Int. Ed. 45, 2426 (2006). (http://dx.doi.org/10.1002/anie.200504432)
- 29. V. Rauniyar, D. G. Hall. Synthesis 3421 (2007).
- 30. R. Wada, K. Oisaki, M. Kanai, M. Shibasaki. J. Am. Chem. Soc. 126, 8910 (2004). (http://dx.doi.org/10.1021/ja047200l)
- 31. S. Lou, P. N. Moquist, S. E. Schaus. J. Am. Chem. Soc. 128, 12660 (2006). (http://dx.doi.org/10.1021/ja0651308)
- 32. (a). R. W. Hoffmann. Pure Appl. Chem. 60, 123 (1988); (http://dx.doi.org/10.1351/pac198860010123)
- 32. (b). R. W. Hoffmann, G. Niel, A. Schlapbach. Pure Appl. Chem. 62, 1993 (1990). (http://dx.doi.org/10.1351/pac199062101993)
- 33. R. W. Hoffmann, U. Weidmann. J. Organomet. Chem. 195, 137 (1980). (http://dx.doi.org/10.1016/S0022-328X(00)89998-2)
- 34. L. Carosi, H. Lachance, D. G. Hall. Tetrahedron Lett. 46, 8981 (2005). (http://dx.doi.org/10.1016/j.tetlet.2005.10.115)
- 35. K. Tissot-Croset, D. Polet, A. Alexakis. Angew. Chem., Int. Ed. 43, 2426 (2004). (http://dx.doi.org/10.1002/anie.200353744)
- 36. L. Carosi, D. G. Hall. Angew. Chem., Int. Engl. 46, 5913 (2007).
- 37. (a). W. R. Roush, P. T. Grover. Tetrahedron Lett. 31, 7567 (1990); (http://dx.doi.org/10.1016/S0040-4039(00)97300-3)
- 37. (b). A. G. M. Barrett, J. W. Malecha. J. Org. Chem. 56, 5243 (1991); (http://dx.doi.org/10.1021/jo00018a004)
- 37. (c). W. R. Roush, P. T. Grover. Tetrahedron 48, 1981 (1992); (http://dx.doi.org/10.1016/S0040-4020(01)88869-4)
- 37. (d). J. A. Hunt, W. R. Roush. J. Org. Chem. 62, 1112 (1997); (http://dx.doi.org/10.1021/jo961840s)
- 37. (e). W. R. Roush, A. N. Pinchuk, G. C. Micalizio. Tetrahedron Lett. 41, 9413 (2000); (http://dx.doi.org/10.1016/S0040-4039(00)01526-4)
- 37. (f). E. M. Flamme, W. R. Roush. J. Am. Chem. Soc. 124, 13644 (2002); (http://dx.doi.org/10.1021/ja028055j)
- 37. (g). A. G. M. Barrett, D. C. Braddock, P. D. de Koning, A. J. P. White, D. J. J. Williams. J. Org. Chem. 65, 375 (2000). (http://dx.doi.org/10.1021/jo991205x)
- 38. F. Peng, D. G. Hall. J. Am. Chem. Soc. 129, 3070 (2007). (http://dx.doi.org/10.1021/ja068985t)
- 39. (a). P. Mohr. Tetrahedron Lett. 34, 6251 (1993); (http://dx.doi.org/10.1016/S0040-4039(00)73723-3)
- 39. (b). J. H. Cassidy, S. P. Marsden, G. Stemp. Synlett 1411 (1997); (http://dx.doi.org/10.1055/s-1997-1062)
- 39. (c). C. Meyer, J. Cossy. Tetrahedron Lett. 38, 7861 (1997). (http://dx.doi.org/10.1016/S0040-4039(97)10147-2)
- 40. R. E. Taylor, F. C. Engelhardt, M. J. Schmitt, H. Yuan. J. Am. Chem. Soc. 123, 2964 (2001). (http://dx.doi.org/10.1021/ja0037163)
- 41. K. Gademann, D. E. Chavez, E. N. Jacobsen. Angew. Chem., Int. Ed. 41, 3059 (2002). (http://dx.doi.org/10.1002/1521-3773(20020816)41:16<3059::AID-ANIE3059>3.0.CO;2-I)
- 42. X. Gao, D. G. Hall. J. Am. Chem. Soc. 125, 9308 (2003). (http://dx.doi.org/10.1021/ja036368o)
- 43. X. Gao, D. G. Hall. J. Am. Chem. Soc. 127, 1628 (2005). (http://dx.doi.org/10.1021/ja042827p)