Pure Appl. Chem., 2008, Vol. 80, No. 3, pp. 459-474
http://dx.doi.org/10.1351/pac200880030459
En route to diplatinum polyynediyl complexes trans,trans-(Ar)(R3P)2Pt(C≡C)nPt(PR3)2(Ar): Untold tales, including end-group strategies
References
- 1. W. Mohr, J. Stahl, F. Hampel, J. A. Gladysz. Chem.Eur. J. 9, 3324 (2003). (http://dx.doi.org/10.1002/chem.200204741)
- 2. Q. Zheng, J. C. Bohling, T. B. Peters, A. C. Frisch, F. Hampel, J. A. Gladysz. Chem.Eur. J. 12, 6486 (2006). (http://dx.doi.org/10.1002/chem.200600615)
- 3. J. Stahl, W. Mohr, L. de Quadras, T. B. Peters, J. C. Bohling, J. M. Martin-Alvarez, G. R. Owen, F. Hampel, J. A. Gladysz. J. Am. Chem. Soc. 129, 8282 (2007). (http://dx.doi.org/10.1021/ja0716103)
- 4. L. de Quadras, E. B. Bauer, W. Mohr, J. C. Bohling, T. B. Peters, J. M. Martin-Alvarez, F.Hampel, J. A. Gladysz. J. Am. Chem. Soc. 129, 8296 (2007). (http://dx.doi.org/10.1021/ja071612n)
- 5. (a). L. de Quadras, F. Hampel, J. A. Gladysz. Dalton Trans. 2929 (2006); (http://dx.doi.org/10.1039/b604465b)
- 5. (b). L. de Quadras, E. B. Bauer, J. Stahl, F. Zhuravlev, F. Hampel, J. A. Gladysz. New. J. Chem. 31, 1594 (2007). (http://dx.doi.org/10.1039/b708690n)
- 6. (a). G. R. Owen, J. Stahl, F. Hampel, J. A. Gladysz. Organometallics 23, 5889 (2004); (http://dx.doi.org/10.1021/om0493558)
- 6. (b). G. R. Owen, J. Stahl, F. Hampel, J. A. Gladysz. Chem.Eur. J. 14, 73 (2008). (http://dx.doi.org/10.1002/chem.200701268)
- 7. G. R. Owen, F. Hampel, J. A. Gladysz. Organometallics 23, 5893 (2004). (http://dx.doi.org/10.1021/om049354f)
- 8. Q. Zheng, F. Hampel, J. A. Gladysz. Organometallics 23, 5896 (2004). (http://dx.doi.org/10.1021/om049353n)
- 9. Computational study: F. Zhuravlev, J. A. Gladysz. Chem.Eur. J. 10, 6510 (2004).
- 10. (a). A. Klein, K.-W. Klinkhammer, T. Scheiring. J. Organomet. Chem. 592, 128 (1999); (http://dx.doi.org/10.1016/S0022-328X(99)00500-8)
- 10. (b). C. Muller, R. J. Lachicotte, W. D. Jones. Organometallics 21, 1190 (2002); (http://dx.doi.org/10.1021/om010984g)
- 10. (c). W.-Y. Wong, C.-K. Wong, G.-L. Lu, K.-W. Cheah, J.-X. Shi, Z. Lin. J. Chem. Soc., Dalton Trans. 4587 (2002); (http://dx.doi.org/10.1039/b207575j)
- 10. (d). V. W.-W. Yam, K. M.-C. Wong, N. Zhu. Angew. Chem., Int. Ed. 42, 1400 (2003); (http://dx.doi.org/10.1002/anie.200390360)
- 10. (e). V. W.-W. Yam, K. M.-C. Wong, N. Zhu. Angew. Chem. 115, 1438 (2003). (http://dx.doi.org/10.1002/ange.200390332)
- 11. (a). M. I. Bruce, P. J. Low, K. Costuas, J.-F. Halet, S. P. Best, G. A. Heath. J. Am. Chem. Soc. 122, 1949 (2000); (http://dx.doi.org/10.1021/ja992002t)
- 11. (b). F. Coat, F. Paul, C. Lapinte, L. Toupet, K.Costuas, J.-F. Halet. J. Organomet. Chem. 683, 368 (2003); (http://dx.doi.org/10.1016/S0022-328X(03)00709-5)
- 11. (c). G.-L. Xu, G. Zou, Y.-H. Ni, M.C. DeRosa, R. J. Crutchley, T. Ren. J. Am. Chem. Soc. 125, 10057 (2003); (http://dx.doi.org/10.1021/ja035434j)
- 11. (d). K. Venkatesan, O. Blacque, H. Berke. Dalton Trans. 1091 (2007). (http://dx.doi.org/10.1039/b615578b)
- 12. (a). M. I. Bruce, P. J. Low. Adv. Organomet. Chem. 50, 179 (2004); (http://dx.doi.org/10.1016/S0065-3055(03)50004-1)
- 12. (b). F. Paul, C. Lapinte. In Unusual Structures and Physical Properties in Organometallic Chemistry, M.Gielen, R. Willem, B. Wrackmeyer (Eds.), pp. 220-291, John Wiley, New York (2002);
- 12. (c). S.Szafert, J. A. Gladysz. Chem. Rev. 103, 4175 (2003); (http://dx.doi.org/10.1021/cr030041o)
- 12. (d). S. Szafert, J. A. Gladysz. Chem. Rev. 106, PR1 (2006). (http://dx.doi.org/10.1021/cr068016g)
- 13. J. Stahl. Doctoral thesis, Universitat Erlangen-Nurnberg (2003).
- 14. L. de Quadras. Doctoral thesis, Universitat Erlangen-Nurnberg (2006).
- 15. K. Sunkel, U. Birk, C. Robl. Organometallics 13, 1679 (1994). (http://dx.doi.org/10.1021/om00017a027)
- 16. R. Uson, J. Fornies, P. Espinet, G. Alfranca. Synth. React. Inorg. Met.-Org. Chem. 10, 579 (1980).
- 17. (a). E. B. Bauer, S. Szafert, F. Hampel, J. A. Gladysz. Organometallics 22, 2184 (2003); (http://dx.doi.org/10.1021/om030195u)
- 17. (b). T.Shima, E. B. Bauer, F. Hampel, J. A. Gladysz. Dalton Trans. 1012 (2004); (http://dx.doi.org/10.1039/b400156g)
- 17. (c). E. B. Bauer, F.Hampel, J. A. Gladysz. Adv. Synth. Catal. 346, 812 (2004); (http://dx.doi.org/10.1002/adsc.200404026)
- 17. (d). N. Lewanzik, T. Oeser, J.Blumel, J. A. Gladysz. J. Mol. Catal. A 254, 20 (2006); (http://dx.doi.org/10.1016/j.molcata.2005.12.047)
- 17. (e). L. de Quadras, J. Stahl, F. Zhuravlev, J. A. Gladysz. J. Organomet. Chem. 692, 1859 (2007). (http://dx.doi.org/10.1016/j.jorganchem.2006.12.023)
- 18. D. T. Rosevear, F. G. A. Stone. J. Chem. Soc. 5275 (1965). (http://dx.doi.org/10.1039/jr9650005275)
- 19. F. J. Hopton, A. J. Rest, D. T. Rosevear, F. G. A. Stone. J. Chem. Soc. A 1326 (1966). (http://dx.doi.org/10.1039/j19660001326)
- 20. R. Eastmond, T. R. Johnson, D. R. M. Walton. J. Organomet. Chem. 50, 87 (1973). (http://dx.doi.org/10.1016/S0022-328X(00)95093-9)
- 21. S. O. Grim, R. L. Keiter, W. McFarlane. Inorg. Chem. 6, 1133 (1967). (http://dx.doi.org/10.1021/ic50052a015)
- 22. (a). P. Siemsen, R. C. Livingston, F. Diederich. Angew. Chem., Int. Ed. 39, 2632 (2000); (http://dx.doi.org/10.1002/1521-3773(20000804)39:15<2632::AID-ANIE2632>3.0.CO;2-F)
- 22. (b). P.Siemsen, R. C. Livingston, F. Diederich. Angew. Chem. 112, 2740 (2000). (http://dx.doi.org/10.1002/1521-3757(20000804)112:15<2740::AID-ANGE2740>3.0.CO;2-F)
- 23. T. B. Peters, Q. Zheng, J. Stahl, J. C. Bohling, A. M. Arif, F. Hampel, J. A. Gladysz. J. Organomet. Chem. 641, 53 (2002). (http://dx.doi.org/10.1016/S0022-328X(01)01311-0)
- 24. W. Mohr, T. B. Peters, J. C. Bohling, F. Hampel, A. M. Arif, J. A. Gladysz. C. R. Chemie 5, 111 (2002).
- 25. G. Vives, A. Carella, S. Sistach, J.-P. Launey, G. Rapenne. New J. Chem. 30, 1429 (2006). (http://dx.doi.org/10.1039/b605509e)
- 26. L. de Quadras, A. Hobbs, H. Kuhn, F. Hampel, K. S. Schanze. Submitted for publication.
- 27. R. Uson, J. Fornies. Adv. Organomet. Chem. 28, 219 (1988).
- 28. (a). K. Reichenbacher, H. I. Suss, J. Hulliger. Chem. Soc. Rev. 34, 22 (2005); (http://dx.doi.org/10.1039/b406892k)
- 28. (b). B. W. Gung, J.C. Amicangelo. J. Org. Chem. 71, 9261 (2006). (http://dx.doi.org/10.1021/jo061235h)
- 29. W. Mohr, G. A. Stark, H. Jiao, J. A. Gladysz. Eur. J. Inorg. Chem. 925 (2001). (http://dx.doi.org/10.1002/1099-0682(200104)2001:4<925::AID-EJIC925>3.0.CO;2-N)
- 30. T. B. Patrick. In Chemistry of Organic Fluorine Compounds II, M. Hudlicky, A. E. Pavlath (Eds.), ACS Monograph 187, pp. 501-524, American Chemical Society, Washington, DC (1995).
- 31. (a). H. K. Cammenga, M. Epple. Angew. Chem., Int. Ed. Engl. 34, 1171 (1995); (http://dx.doi.org/10.1002/anie.199511711)
- 31. (b). H. K. Cammenga, M. Epple. Angew. Chem. 107, 1284 (1995). The Te values best represent the temperature of the phase transition or exotherm. (http://dx.doi.org/10.1002/ange.19951071105)
- 32. (b) For virtual triplets [W. H. Hersh. J. Chem. Educ. 74, 1485 (1997)], the J values represent the apparent couplings between adjacent peaks. (c) The 19F{1H} NMR spectra were referenced to external C6F6 (d, -162.00 ppm), and the 195Pt{1H} spectra to external K2PtCl4 (saturated D2O solution; d, 0.00 ppm).
- 33. This coupling represents a satellite (d, 195Pt = 33.8 %), and is not reflected in the peak multiplicity given.
- 34. m/z (FAB, 3-NBA) for the most intense peak of the isotope envelope. For some complexes, a background peak from the matrix was the most intense; in these cases, no ion of 100% intensity is specified.
- 35. H. D. Verkruijsse, L. Brandsma. Synth. Commun. 21, 657 (1991). The H(C∫C)2H concentration was calculated from the mass increase of the THF solution. CAUTION: this compound is explosive and literature precautions should be followed.
- 36. Platinum coupling would be expected based upon spectra of related compounds; however, the signal/noise ratio was not sufficient.
- 37. This complex was too insoluble for a 13C NMR spectrum to be recorded.
- 38. W.-N. Chou, M. Pomerantz. J. Org. Chem. 56, 2762 (1991). (http://dx.doi.org/10.1021/jo00008a036)