Pure Appl. Chem., 2008, Vol. 80, No. 11, pp. 2405-2423
http://dx.doi.org/10.1351/pac200880112405
Organic field-effect transistors based on tetrathiafulvalene derivatives
References
- 1. K. E. Katz, Z. Bao, S. Gilat. Acc. Chem. Res. 34, 359 (2001). (http://dx.doi.org/10.1021/ar990114j)
- 2. C. D. Dimitrakopoulos, P. R. L. Malenfant. Adv. Mater. 14, 99 (2002). (http://dx.doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9)
- 3. Y. Sun, Y. Liu, D. Zhu. J. Mater. Chem. 15, 53 (2005). (http://dx.doi.org/10.1039/b411245h)
- 4. For recent reviews, see special issue "Organic Electronics and Optoelectronics", S. R. Forrest, M. E. Thompson (Eds.). Chem. Rev. 107, 923-1386 (2007).
- 5. A. Kraft. ChemPhysChem 2, 163 (2001). (http://dx.doi.org/10.1002/1439-7641(20010316)2:3<163::AID-CPHC163>3.0.CO;2-V)
- 6. S. R. Forrest. Nature 428, 911 (2004). (http://dx.doi.org/10.1038/nature02498)
- 7. J. Ferraris, D. O. Cowan, V. Walatka Jr., J. H. Perlstein. J. Am. Chem. Soc. 95, 948 (1973). (http://dx.doi.org/10.1021/ja00784a066)
- 8. For recent reviews, see special issue "Molecular Conductors", P. Batail (Ed.), Chem. Rev. 104, 4887-5782 (2004).
- 9. M. Mas-Torrent, C. Rovira. J. Mater. Chem. 16, 433 (2006). (http://dx.doi.org/10.1039/b510121b)
- 10. J. Casado, M. Z. Zgierski, M. C. R. Delgado, J. T. L. Navarrete, M. Mas-Torrent, C. Rovira. J. Phys. Chem. C 111, 10110 (2007). (http://dx.doi.org/10.1021/jp073148e)
- 11. J.-P. Bourgoin, M. Vandevyver, A. Barraud, G. Tremblay, P. Hesto. Mol. Eng. 2, 309 (1993). (http://dx.doi.org/10.1007/BF00999819)
- 12. M. Iizuka, Y. Shiratori, S. Kuniyoshi, K. Kudo, K. Tanaka. Appl. Surf. Sci. 130-132, 914 (1998). (http://dx.doi.org/10.1016/S0169-4332(98)00176-7)
- 13. M. Mas-Torrent, M. Durkut, P. Hadley, X. Ribas, C. Rovira. J. Am. Chem. Soc. 126, 984 (2004). (http://dx.doi.org/10.1021/ja0393933)
- 14. Naraso, J-i. Nishida, D. Kumaki, S. Tokito, Y. Yamashita. J. Am. Chem. Soc. 128, 9598 (2006). (http://dx.doi.org/10.1021/ja0630083)
- 15. S. M. Sze. Semiconductor Devices, Physics, and Technology, p. 490, John Wiley, New York (1985).
- 16. H. E. Katz, Z. Bao. J. Phys. Chem. B 104, 671 (2000). (http://dx.doi.org/10.1021/jp992853n)
- 17. C. Reese. Z. Bao. J. Mater. Chem. 16, 329 (2006).
- 18. A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudi, Z. Bao. Nature 444, 913 (2006). (http://dx.doi.org/10.1038/nature05427)
- 19. M. Mas-Torrent, P. Hadley, S. T. Bromley, X. Ribas, J. Tarres, M. Mas, E. Molins, J. Veciana, C. Rovira. J. Am. Chem. Soc. 126, 8546 (2004). (http://dx.doi.org/10.1021/ja048342i)
- 20. M. Mas-Torrent, P. Hadley, S. T. Bromley, N. Crivillers, J. Veciana, C. Rovira. Appl. Phys. Lett. 86, 012110 (2005). (http://dx.doi.org/10.1063/1.1848179)
- 21. M. Mas-Torrent, P. Hadley, X. Ribas, C. Rovira. Synth. Met. 146, 265 (2004). (http://dx.doi.org/10.1016/j.synthmet.2004.08.023)
- 22. C. Colin, C. R. Pasquier, P. Auban-Senzier, F. Restagno, S. Baudron, P. Batail, J. Fraxedas. Synth. Met. 146, 273 (2004). (http://dx.doi.org/10.1016/j.synthmet.2004.08.024)
- 23. E. J. Meijer, D. M. De Leeuw, S. Setayesh, E. Van Veenendaal, B.-H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk. Nat. Mater. 2, 678 (2003). (http://dx.doi.org/10.1038/nmat978)
- 24. N. E. Gruhn, D. A. da Silva Filho, T. G. Bill, M. Malagoli, V. Coropceanu, A. Kahn, J.-L. Bredas. J. Am. Chem. Soc. 124, 7918 (2002). (http://dx.doi.org/10.1021/ja0175892)
- 25. (a). S. T. Bromley, M. Mas-Torrent, P. Hadley, C. Rovira. J. Am. Chem. Soc. 126, 6544 (2004); (http://dx.doi.org/10.1021/ja049762a)
- 25. (b). S. T. Bromley, F. Illas, M. Mas-Torrent. Phys. Chem. Chem. Phys. 10, 121 (2008). (http://dx.doi.org/10.1039/b713688a)
- 26. A. R. Murphy, J. M. J. Frechet. Chem. Rev. 107, 1066 (2007). (http://dx.doi.org/10.1021/cr0501386)
- 27. Naraso, J-i. Nishida, S. Ando, J. Yamaguchi, K. Itaka, H. Koinuma, H. Tada, S. Tokito, Y. Yamashita. J. Am. Chem. Soc. 127, 10142 (2005). (http://dx.doi.org/10.1021/ja051755e)
- 28. X. Gao, Y. Wang, X. Yang, Y. Liu, W. Qiu, W. Wu, H. Zhang, T. Qi, Y. Liu, K. Lu, C. Du, Z. Shuai, G. Yu, D. Zhu. Adv. Mater. 19, 3037 (2007). (http://dx.doi.org/10.1002/adma.200700007)
- 29. B. Noda, H. Wada, K. Shibata, T. Yoshino, M. Katsuhara, I. Aoyagi, T. Mori, T. Taguchi, T. Kambayashi, K. Ishikawa, H. Takezoe. Nanotechnology 18, 424009 (2007). (http://dx.doi.org/10.1088/0957-4484/18/42/424009)
- 30. B. Noda, M. Katsuhara, I. Aoyagi, T. Mori, T. Taguchi, T. Kambayashi, K. Ishikawa, H. Takezoe. Chem. Lett. 34, 392 (2005). (http://dx.doi.org/10.1246/cl.2005.392)
- 31. M. Katsuhara, I. Aoyagi, H. Nakajima, T. Mori, T. Kambayashi, M. Ofuji, Y. Takanishi, K. Ishikawa, H. Takezoe, H. Hosono. Synth. Met. 149, 219 (2005). (http://dx.doi.org/10.1016/j.synthmet.2005.01.005)
- 32. J. Xue, S. R. Forrest. Appl. Phys. Lett. 79, 3714 (2001). (http://dx.doi.org/10.1063/1.1420777)
- 33. M. Takada, H. Graaf, Y. Yamashita, H. Tada. Jpn. J. Appl. Phys. 41, L4 (2002). (http://dx.doi.org/10.1143/JJAP.41.L4)
- 34. Y. Morioka, J.-i. Nishida, E. Fujiwara, H. Tada, Y. Yamashita. Chem. Lett. 33, 1632 (2004). (http://dx.doi.org/10.1246/cl.2004.1632)
- 35. K. Imaeda, Y. Yamashita, Y. Li, T. Mori, H. Inokuchi, M. Sano. J. Mater. Chem. 2, 115 (1992). (http://dx.doi.org/10.1039/jm9920200115)
- 36. Y.-L. (Lynn) Loo. AICHE J. 53, 1066 (2007). (http://dx.doi.org/10.1002/aic.11151)
- 37. M. M. Matsushita, H. Kawakami, E. Okabe, H. Kouka, Y. Kawada, T. Sugawara. Polyhedron 24, 2870 (2005). (http://dx.doi.org/10.1016/j.poly.2005.08.014)
- 38. S. Ukai, S. Igarashi, M. Nakajima, K. Marumoto, H. Ito, S. Kuroda, K. Nishimura, Y. Enomoto, G. Saito. Colloids Surf., A 284-285, 589 (2006). (http://dx.doi.org/10.1016/j.colsurfa.2006.01.039)
- 39. P. Miskiewicz, M. Mas-Torrent, J. Jung, S. Kotarba, I. Glowacki, E. Gomar-Nadal, D. B. Amabilino, J. Veciana, B. Krause, D. Carbone, C. Rovira, J. Ulanski. Chem. Mater. 18, 4724 (2006). (http://dx.doi.org/10.1021/cm060675m)
- 40. M. Mas-Torrent, S. Masirek, P. Hadley, N. Crivillers, N. S. Oxtoby, P. Reuter, J. Veciana, C. Rovira, A. Tracz. Org. Electr. 9, 143 (2008).
- 41. X. Gao, W. Wu, Y. Liu, W. Qiu, X. Sun, G. Yu, D. Zhu. Chem. Commun. 2750 (2006). (http://dx.doi.org/10.1039/b603632e)
- 42. X. Gao, W. Wu, Y. Liu, S. Jiao, W. Qiu, G. Yu, L. Wang, D. Zhu. J. Mater. Chem. 17, 736 (2007). (http://dx.doi.org/10.1039/b613093c)
- 43. I. Doi, E. Miyazaki, K. Takimiya, Y. Kunugi. Chem. Mater. 19, 5230 (2007). (http://dx.doi.org/10.1021/cm070956+)
- 44. Y. Wang, H. Wang, Y. Liu, C. Di, Y. Sun, W. Wu, G. Yu, D. Zhang, D. Zhu. J. Am. Chem. Soc. 128, 13058 (2006). (http://dx.doi.org/10.1021/ja064580x)
- 45. H. Inokuchi, G. Saito, P. Wu, K. Seki, T. Tang, T. Mori, K. Imaeda, T. Enoki, Y. Higuchi. Chem. Lett. 1263 (1986). (http://dx.doi.org/10.1246/cl.1986.1263)
- 46. M. Adam, K. Mullen. Adv. Mater. 6, 439 (1994). (http://dx.doi.org/10.1002/adma.19940060603)
- 47. K. Lahlil, A. Moradpour, C. Bowlas, F. Menou, P. Cassoux, J. Bonvoisin, J.-P. Launay, G. Dive, D. Dehareng. J. Am. Chem. Soc. 117, 9995 (1995). (http://dx.doi.org/10.1021/ja00145a009)
- 48. T. Hasegawa, K. Mattenberger, J. Takeya, B. Batlogg. Phys. Rev. B 69, 245115 (2004). (http://dx.doi.org/10.1103/PhysRevB.69.245115)
- 49. Y. Takahashi, T. Hasegawa, Y. Abe, Y. Tokura, K. Nishimura, G. Saito. Appl. Phys. Lett. 86, 063504 (2005). (http://dx.doi.org/10.1063/1.1863434)
- 50. Y. Takahashi, T. Hasegawa, Y. Abe, Y. Tokura, G. Saito. Appl. Phys. Lett. 88, 073504 (2006). (http://dx.doi.org/10.1063/1.2173226)
- 51. K. Shibata, H. Wada, K. Ishikawa, H. Takezoe, T. Mori. Appl. Phys. Lett. 90, 193509 (2007). (http://dx.doi.org/10.1063/1.2738379)
- 52. M. Sakai, M. Iizuka, M. Nakamura, K. Kudo. Synth. Met. 153, 293 (2005). (http://dx.doi.org/10.1016/j.synthmet.2005.07.156)
- 53. S. Horiuchi, T. Hasegawa, Y. Tokura. J. Phys. Soc. Jpn. 75, 051016 (2006). (http://dx.doi.org/10.1143/JPSJ.75.051016)
- 54. S. Horiuchi, T. Hasegawa, Y. Tokura. Mol. Cryst. Liq. Cryst. 455, 295 (2006). (http://dx.doi.org/10.1080/15421400600698766)