Pure Appl. Chem., 2008, Vol. 80, No. 11, pp. 2377-2395
http://dx.doi.org/10.1351/pac200880112377
Polyaniline-carbon nanotube composites
References
- 1. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger. J. Chem. Soc., Chem. Commun. 578 (1977). (http://dx.doi.org/10.1039/c39770000578)
- 2. T. A. Skotheim, R. L. Elsenbaumer, J. R. Reynolds (Ed.). Handbook of Conducting Polymers, 2nd ed., Marcel Dekker, New York (1998).
- 3. P. Chandrasekhar. Conducting Polymers, Fundamentals and Applications: A Practical Approach, Kluwer Academic, Boston (1999).
- 4. E. M. Genies, A. Boyle, M. Lapkowski, C. Tsintavis. Synth. Met. 36, 139 (1990). (http://dx.doi.org/10.1016/0379-6779(90)90050-U)
- 5. A. A. Syed, M. K. Dinesan. Talanta 38, 815 (1991). (http://dx.doi.org/10.1016/0039-9140(91)80261-W)
- 6. D.C. Trivedi. In Handbook of Organic Conducting Molecules and Polymers, H. S. Nalwa (Ed.), 2, Chap. 12, John Wiley, New York (1997).
- 7. E. T. Kang, K. G. Neoh, K. L. Tan. Prog. Polym. Sci. 23, 277 (1998). (http://dx.doi.org/10.1016/S0079-6700(97)00030-0)
- 8. N. Gospodinova, L. Terlemezyan. Prog. Polym. Sci. 23, 1443 (1998). (http://dx.doi.org/10.1016/S0079-6700(98)00008-2)
- 9. A. Malinauskas. J. Power Sources 126, 214 (2004). (http://dx.doi.org/10.1016/j.jpowsour.2003.08.008)
- 10. R. Gangopadhyay. In Encyclopaedia of Nanoscience and Nanotechnology, H. S. Nalwa (Ed.), 2, pp. 105-131, American Scientific Publishers (2004).
- 11. S. Neves, W. A. Gazotti, M. A. D. Paoli. In Encyclopaedia of Nanoscience and Nanotechnology, H. S. Nalwa (Ed.), 2, pp. 133-152, American Scientific Publishers (2004).
- 12. M. Wan. In Encyclopaedia of Nanoscience and Nanotechnology, H. S. Nalwa, (Ed.), 2, pp. 153-169, American Scientific Publishers (2004).
- 13. G. G. Wallace, P. C. Innis, L. A. P. Kane-Maguire. In Encyclopaedia of Nanoscience and Nanotechnology, H. S. Nalwa (Ed.), 4, pp. 113-130, American Scientific Publishers (2004).
- 14. D. Zhang, Y. Wang. Mater. Sci. Eng. B 134, 9 (2006). (http://dx.doi.org/10.1016/j.mseb.2006.07.037)
- 15. J. Jang. Adv. Polym. Sci. 199, 189 (2006). (http://dx.doi.org/10.1007/12_075)
- 16. J. Huang. Pure Appl. Chem. 78, 15 (2006). (http://dx.doi.org/10.1351/pac200678010015)
- 17. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley. Nature 318, 162 (1985). (http://dx.doi.org/10.1038/318162a0)
- 18. S. Ijima. Nature 354, 56 (1991). (http://dx.doi.org/10.1038/354056a0)
- 19. G. Kickelbick. Hybrid Materials: Synthesis, Characterization and Applications, Wiley-VCH, Darmstadt (2007).
- 20. J. Anand, S. Palaniappan, D. N. Sathyanarayana. Prog. Polym. Sci. 23, 993 (1998). (http://dx.doi.org/10.1016/S0079-6700(97)00040-3)
- 21. A. Pud, N. Ogurtsov, A. Korzhenko, G. Shapoval. Prog. Polym. Sci. 28, 1701 (2003). (http://dx.doi.org/10.1016/j.progpolymsci.2003.08.001)
- 22. R. Gangopadhyay, A. De. Chem. Mater. 12, 608 (2000). (http://dx.doi.org/10.1021/cm990537f)
- 23. M. Baibarac, P. G. Romero. J. Nanosci. Nanotechnol. 6, 289 (2006).
- 24. L. Dai. Aust. J. Chem. 60, 472 (2007). (http://dx.doi.org/10.1071/CH06470)
- 25. C. Downs, J. Nugent, P. M. Ajayan, D. J. Duquette, K. S. V. Santhanam. Adv. Mater. 11, 1028 (1999). (http://dx.doi.org/10.1002/(SICI)1521-4095(199908)11:12<1028::AID-ADMA1028>3.0.CO;2-N)
- 26. I. A. Tchmutin, A. T. Ponomarenko, E. P. Krinichnaya, G. I. Kozub, O. N. Efinov. Carbon 41, 1391 (2003). (http://dx.doi.org/10.1016/S0008-6223(03)00067-8)
- 27. M. Baibarac, I. Batlog, S. Lefrant, J. Y. Mavellec, O. Chauvet. Chem. Mater. 15, 4149 (2003). (http://dx.doi.org/10.1021/cm021287x)
- 28. X. Bi, Z. J. Han, Y. Yang, B. K. Tay. J. Phys. Chem. C 111, 4125 (2007). (http://dx.doi.org/10.1021/jp0651844)
- 29. M. Cochet, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martinez, J. M. Benoit, J. Schreiber, O. Chauvet. Chem. Commun. 1450 (2001). (http://dx.doi.org/10.1039/b104009j)
- 30. M. R. Karim, C. J. Lee, Y. Y. Park, M. S. Lee. Synth. Met. 151, 131 (2005). (http://dx.doi.org/10.1016/j.synthmet.2005.03.012)
- 31. B. Valter, M. K. Ram, C. Nicolini. Langmuir 18, 1535 (2002). (http://dx.doi.org/10.1021/la0104673)
- 32. X. Lu, J. Zheng, D. Chao, J. Chen, W. Zhang, Y. Wei. J. Appl. Polym. Sci. 100, 2356 (2006). (http://dx.doi.org/10.1002/app.23068)
- 33. X. Lu, D. Chao, J. Zheng, J. Chen, W. Zhang, Y. Wei. Polym. Int. 55, 945 (2006). (http://dx.doi.org/10.1002/pi.2046)
- 34. (a). B. Zhao, H. Hu, R. C. Haddon. Adv. Funct. Mater. 14, 71 (2004); (http://dx.doi.org/10.1002/adfm.200304440)
- 34. (b). B. Zhao, H. Hu. A. Yu, D. Perea, R. C. Haddon. J. Am. Chem. Soc. 127, 8197 (2005). (http://dx.doi.org/10.1021/ja042924i)
- 35. T. M. Wu, Y. W. Lin. Polymer 47, 3576 (2006). (http://dx.doi.org/10.1016/j.polymer.2006.03.060)
- 36. B. Philip, J. Xie, J. Abraham, V. Varadan. Polym. Bull. 53, 127 (2005). (http://dx.doi.org/10.1007/s00289-004-0321-x)
- 37. B. Philip, J. Xie, J. K. Abraham, V. K. Varadan. Smart Mater. Struct. 15, N105 (2004).
- 38. Z. Wei, M. Wan, T. Lin, L. Dai. Adv. Mater. 15, 136 (2003). (http://dx.doi.org/10.1002/adma.200390027)
- 39. Y. Ma, S. R. Ali, L. Wang, P. L. Chiu, R. Mendelsohn, H. He. J. Am. Chem. Soc. 128, 12064 (2006). (http://dx.doi.org/10.1021/ja063375e)
- 40. X. Zhang, J. Zhang, R. Wang, Z. Liu. Carbon 42, 1455 (2004). (http://dx.doi.org/10.1016/j.carbon.2004.01.003)
- 41. X. Zhang, Z. Lu, M. Wen, H. Liang, J. Zhang, Z. Liu. J. Phys. Chem. B 109, 1101 (2005). (http://dx.doi.org/10.1021/jp045934e)
- 42. J. Deng, X. Ding, W. Zhang, Y. Peng, J. Wang, X. Long, P. Li, A. S. C. Chan. Eur. Polym. J. 38, 2497 (2002). (http://dx.doi.org/10.1016/S0014-3057(02)00165-9)
- 43. S. J. Park, S. Y. Park, M. S. Cho, H. J. Choi, J. Joo. Mol. Cryst. Liq. Cryst. 425, 299 (2004).
- 44. Y. Yu, B. Che, Z. Si, L. Li, W. Chen, G. Xue. Synth. Met. 150, 271 (2005). (http://dx.doi.org/10.1016/j.synthmet.2005.02.011)
- 45. M Panhuis, R. Sainz, P. C. Innis, L. A. P. Kane-Maguire, A. M Benito, M. T. Artinez, S. E. Moulton, G. G. Wallace, W. K. Maser. J. Phys. Chem. B 109, 22725 (2005). (http://dx.doi.org/10.1021/jp053025z)
- 46. R. Sainz, W. R. Samll, N. A. Young, C. Valles, A. M. Benito, W. K. Maser, M. Panhuis. Macromolecules 39, 7324 (2006). (http://dx.doi.org/10.1021/ma061587q)
- 47. X. Zhang, W. Song, P. J. F. Harris, G. R. Mitchell, T. T. T. Bui, A. F. Drake. Adv. Mater. 19, 1079 (2007). (http://dx.doi.org/10.1002/adma.200601886)
- 48. H. Zang, H. X. Li, H. M. Cheng. J. Phys. Chem. B 110, 9095 (2006). (http://dx.doi.org/10.1021/jp060193y)
- 49. M. G. Markoic, J. G. Matisons, R. Cervini, G. P. Simon, P. M. Fredericks. Chem. Mater. 18, 6258 (2006). (http://dx.doi.org/10.1021/cm061344c)
- 50. H. Mi, X. Zhang, S. An, X. Ye, S. Yang. Electrochem. Commun. 9, 2859 (2007).
- 51. K. P. Lee, A. I. Gopalan, P. Santhosh, S. H. Lee, Y. C. Nho. Comp. Sci. Technol. 67, 811 (2007). (http://dx.doi.org/10.1016/j.compscitech.2005.12.030)
- 52. K. R. Reddy, K. P. Lee, A. I. Gopalan, M. S. Kim, A. M. Showkat, Y. C. Nho. J. Polym. Sci., Part A 44, 3355 (2006). (http://dx.doi.org/10.1002/pola.21451)
- 53. M. Wu, G. A. Snook, V. Gupta, M. Shaffer, D. J. Fray, G. Z. Chen. J. Mater. Chem. 15, 2297 (2005). (http://dx.doi.org/10.1039/b418835g)
- 54. J. E. Huang, X. H. Li, J. C. Xu, H. L. Li. Carbon 41, 2731 (2003). (http://dx.doi.org/10.1016/S0008-6223(03)00359-2)
- 55. S. E. Kooi, U. Schlecht, M. Burghard, K. Kern. Angew. Chem., Int. Ed. 41, 1353 (2002). (http://dx.doi.org/10.1002/1521-3773(20020415)41:8<1353::AID-ANIE1353>3.0.CO;2-I)
- 56. K. Balasubramanian, M. Friedrich, C. Jiang, Y. Fan, A. Mews, M. Burghard, K. Kern. Adv. Mater. 15, 1515 (2003). (http://dx.doi.org/10.1002/adma.200305129)
- 57. F. Qu, M. Yang, J. Jiang, G. Shen, R. Yu. Anal. Biochem. 344, 108 (2005). (http://dx.doi.org/10.1016/j.ab.2005.06.007)
- 58. P. Santhosh, K. M. Manesh, K. P. Lee, A. I. Gopalan. Electroanalysis 18, 894 (2006). (http://dx.doi.org/10.1002/elan.200503474)
- 59. X. Zhang, W. Song, P. J. F. Harris, G. R. Mitchell. Chem. Phys. Chem. 8, 1766 (2007). (http://dx.doi.org/10.1002/cphc.200700213)
- 60. D. Wei, C. Kvarnstrom, T. Lindfors, A. Ivaska. Electrochem. Commun. 8, 1563 (2006). (http://dx.doi.org/10.1016/j.elecom.2006.07.024)
- 61. D. Wei, C. Kvarnstrom, T. Lindfors, A. Ivaska. Electrochem. Commun. 9, 206 (2007). (http://dx.doi.org/10.1016/j.elecom.2006.09.008)
- 62. V. Gupta, N. Miura. J. Power Sources 157, 616 (2006). (http://dx.doi.org/10.1016/j.jpowsour.2005.07.046)
- 63. V. Gupta, N. Miura. Electrochim. Acta 52, 1721 (2006). (http://dx.doi.org/10.1016/j.electacta.2006.01.074)
- 64. N. F. Anglada, M. Kaempgen, V. Skakalova, U. D. Weglikowska, S. Roth. Diamond Relat. Mater. 13, 256 (2004). (http://dx.doi.org/10.1016/j.diamond.2003.10.026)
- 66. N. F. Anglada, V. Gomis, Z. E. Hachemi, U. D. Weglikovska, M. Kaempgen, S. Roth. Phys. Status Solidi (a) 203, 1082 (2006). (http://dx.doi.org/10.1002/pssa.200566188)
- 66. P. Gajendran, R. Saraswathi. J. Phys. Chem. C 111, 11320 (2007). (http://dx.doi.org/10.1021/jp071848d)
- 67. Y. Lin, X. Cui. J. Mater. Chem. 16, 582 (2006).
- 68. P. J. Kulesza, M. Skunik, B. Baranowska, K. Miecznikowski, M. Chojak, K. Karnicka, F. Frackowiak, F. Beguin, A. Kuhn, M. H. Delville, B. Starobrzynska, A. Ernst. Electrochim. Acta 51, 2373 (2006). (http://dx.doi.org/10.1016/j.electacta.2005.06.041)
- 69. P. S. M. Shaffer, X. Fan, A. H. Windle. Carbon 36, 1603 (1998). (http://dx.doi.org/10.1016/S0008-6223(98)00130-4)
- 70. P. Gajendran, R. Saraswathi. Unpublished results.
- 71. G. Wu, L. Li, J. H. Li, B. Q. Xu. J. Power Sources 155, 118 (2006).
- 72. D. J. Guo, H. L. Li. J. Solid State Electrochem. 9, 445 (2005). (http://dx.doi.org/10.1007/s10008-004-0589-7)
- 73. E. N. Konyushenko, J. Stejskal, M. Trchova, J. Hradil, J. Kovarova, J. Prokes, M. Cieslar, J. Y. Hwang, K. H. Chen, I. Sapurina. Polymer 47, 5715 (2006). (http://dx.doi.org/10.1016/j.polymer.2006.05.059)
- 74. A. Hassanien, M. Gao, M. Tokumoto, L. Dai. Chem. Phys. Lett. 342, 479 (2001). (http://dx.doi.org/10.1016/S0009-2614(01)00626-1)
- 75. R. Sainz, A. M. Benito, M. T. Martinez, J. F. Galindo, J. Stores, A. M. Baro, B. Corraze, O. Chauvet, W. K. Maser. Adv. Mater. 17, 278 (2005). (http://dx.doi.org/10.1002/adma.200400921)
- 76. R. Sainz, A. M. Benito, M. T. Martinez, J. F. Galindo, J. Stores, A. M. Baro, B. Corraze, O. Chauvet, A. B. Dalton, R. H. Baughman, W. K. Maser. Nanotechnology 16, S150 (2005). (http://dx.doi.org/10.1088/0957-4484/16/5/003)
- 77. Y. Ma, S. R. Ali, A. S. Dodoo, H. He. J. Phys. Chem. B 110, 16359 (2006). (http://dx.doi.org/10.1021/jp0614897)
- 78. H. Zengin, W. Zhou, J. Jin, R. Czerw, D. W. Smith, J. L. Echegoyen, D. L. Carroll, S. H. Foulger, J. Ballato. Adv. Mater. 14, 1480 (2002). (http://dx.doi.org/10.1002/1521-4095(20021016)14:20<1480::AID-ADMA1480>3.0.CO;2-O)
- 79. S. Lefrant, M. Baibarac, I. Baltog, J. Y. Mevellec, C. Godon, O. Chauvet. Diamond Relat. Mater. 14, 867 (2005). (http://dx.doi.org/10.1016/j.diamond.2004.11.035)
- 80. W. Feng, X. D. Ba, Y. Q. Lian, J. Liang, X. G. Wang, K. Yoshino. Carbon 41, 1551 (2003). (http://dx.doi.org/10.1016/S0008-6223(03)00078-2)
- 81. Y. Long, Z. Chen. Appl. Phys. Lett. 85, 1796 (2004). (http://dx.doi.org/10.1063/1.1786370)
- 82. H. Nakamatsu, E. Itoh, K. Miyairi. Mol. Cryst. Liq. Cryst. 472, 485 (2007).
- 83. E. Bekyarova, M. E. Itkis, N. Cabrea, B. Zhao, A. Yu, J. Gao, R. C. Haddon. J. Am. Chem. Soc. 127, 5990 (2005). (http://dx.doi.org/10.1021/ja043153l)
- 84. P. C. Ramamurthy, W. R. Harrell, R. V. Gregory, B. Sadanadan, A. M. Rao. Polym. Eng. Sci. 44, 28 (2004). (http://dx.doi.org/10.1002/pen.20002)
- 85. P. C. Ramamurthy, A. M. Malshe, W. R. Harrel, R. V. Gregory, K. McGuire, A. M. Rao. Solid-State Electron. 48, 2019 (2004). (http://dx.doi.org/10.1016/j.sse.2004.05.051)
- 86. C. Nastase, F. Nastase, A. Vaseashta, I. Stamatin. Prog. Solid State Chem. 34, 181 (2006). (http://dx.doi.org/10.1016/j.progsolidstchem.2005.11.021)
- 87. M. V. Kulkarni, A. K. Viswanath. J. Macromol. Sci., Pure Appl. Chem. 41, 1173 (2004).
- 88. V. Mottaghitalab, G. M. Spinks, G. G. Wallace. Synth. Met. 152, 77 (2005). (http://dx.doi.org/10.1016/j.synthmet.2005.07.154)
- 89. V. Mottaghitalab, B. Xi, G. M. Spinks, G. G. Wallace. Synth. Met. 156, 796 (2006). (http://dx.doi.org/10.1016/j.synthmet.2006.03.016)
- 90. P. C. Ramamurthy, W. R. Harrell, R. V. Gregory, B. Sadanadan, A. M. Rao. J. Electrochem. Soc. 151, G502 (2004). (http://dx.doi.org/10.1149/1.1764570)
- 91. S. J. Park, S. Y. Park, M. S. Cho, H. J. Choi, M. S. John. Synth. Met. 152, 337 (2005). (http://dx.doi.org/10.1016/j.synthmet.2005.07.261)
- 92. H. J. Choi, S. J. Park, S. T. Kim, M. S. Jhon. Diamond Relat. Mater. 14, 766 (2005). (http://dx.doi.org/10.1016/j.diamond.2004.12.052)
- 93. C. S. Choi, S. J. Park, H. J. Choi. Curr. Appl. Phys. 7, 352 (2007). (http://dx.doi.org/10.1016/j.cap.2006.09.007)
- 94. E. N. Konyushenko, N. E. Kazantseva, J. Stejskal, M. Trchova, J. Kovarova, I. Sapurina, M. M. Tomishko, O. V. Demicheva, J. Prokes. J. Magn. Magn. Mater. 320, 231 (2008). (http://dx.doi.org/10.1016/j.jmmm.2007.05.036)
- 95. R. Saraswathi. 17th International Symposium on Fine Chemistry and Functional Polymers (FCFP-XVII) & IUPAC 3rd International Symposium on Novel Materials and Synthesis (NMS-III), 17-21 October 2007, Shanghai, China, J. Fudan University (Natural Science), 46, 691 (2007).
- 96. C. Y. Wang, V. Mottaghitalab, C. O. Too, G. M. Spinks, G. G. Wallace. J. Power Sources 163, 1105 (2007). (http://dx.doi.org/10.1016/j.jpowsour.2006.08.021)
- 97. S. R. Sivakkumar, D. W. Kim. J. Electrochem. Soc. 154, A134 (2007). (http://dx.doi.org/10.1149/1.2404901)
- 98. S. R. Sivakkumar, D. R. MacFarlane, M. Forsyth, D. W. Kim. J. Electrochem. Soc. 154, A834 (2007). (http://dx.doi.org/10.1149/1.2750443)
- 99. P. Novak, K. Muller, K. S. V. Santhanam, O. Haas. Chem. Rev. 97, 283 (1997). (http://dx.doi.org/10.1021/cr941181o)
- 100. B. E. Conway. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, pp. 299-334, Kluwer Academic/Plenum, New York (1999).
- 101. E. Frackowiak. In Dekker Encyclopaedia of Nanoscience and Nanotechnology, J. A. Schwarz, C. I. Contescu, K. Putyera (Eds.), C, 537-546, Taylor & Francis (2004).
- 102. M. Hughes. In Dekker Encyclopaedia of Nanoscience and Nanotechnology, J. A. Schwarz, C. I. Contescu, K. Putyera (Eds.), C, 447-459, Taylor & Francis (2004).
- 103. V. V. N. Obreja. Physica E: Low-Dimen. Syst. Nanostruct. 9, 44 (2007).
- 104. A. K. Shukla, S. Sampath, K. Vijaymohanan. Curr. Sci. 79, 1656 (2002).
- 105. K. R. Prasad, N. Munichandraiah. J. Power Sources 112, 443 (2002). (http://dx.doi.org/10.1016/S0378-7753(02)00419-6)
- 106. E. Frackowiak, F. Beguin. Carbon 40, 1775 (2002). (http://dx.doi.org/10.1016/S0008-6223(02)00045-3)
- 107. Y. K. Zhou, B. He, W. Zhou, J. Huang, X. Li, B. Wu, H. Li. Electrochim. Acta 49, 257 (2004). (http://dx.doi.org/10.1016/j.electacta.2003.08.007)
- 108. Y. K. Zhou, B. L. He, W. J. Zhou, H. L. Li. J. Electrochem. Soc. 151, A1052 (2004). (http://dx.doi.org/10.1149/1.1758812)
- 109. J. Jang, J. Bae, M. Choi, S. H. Yoon. Carbon 43, 2730 (2005). (http://dx.doi.org/10.1016/j.carbon.2005.05.039)
- 110. V. Khomenko, E. Frackowiak, F. Beguin. Electrochim. Acta 50, 2499 (2005). (http://dx.doi.org/10.1016/j.electacta.2004.10.078)
- 111. M. Deng, B. Yang, Y. Hu. J. Mater. Sci. 40, 5021 (2005). (http://dx.doi.org/10.1007/s10853-005-1623-6)
- 112. S. R. Sivakkumar, W. J. Kim, J. A. Choi, D. R. MacFarlane, M. Forsyth, D. W. Kim. J. Power Sources 171, 1062 (2007). (http://dx.doi.org/10.1016/j.jpowsour.2007.05.103)
- 113. C. Peng, J. Jin, G. Z. Chen. Electrochim. Acta 53, 525 (2007). (http://dx.doi.org/10.1016/j.electacta.2007.07.004)
- 114. M. Wu, L. Zhang, D. Wang, J. Gao, S. Zhang. Nanotechnology 19, 1 (2007).
- 115. K. M. Manesh, P. Santhosh, A. I. Gopalan. K. P. Lee. Electroanalysis 18, 1564 (2006). (http://dx.doi.org/10.1002/elan.200603567)
- 116. P. Santhosh, A. I. Gopalan, K. P. Lee. J. Catal. 238, 177 (2006). (http://dx.doi.org/10.1016/j.jcat.2005.12.014)
- 117. J. Shi, Z. Wang, H. L. Li. J. Mater. Sci. 42, 539 (2007). (http://dx.doi.org/10.1007/s10853-006-1043-2)
- 118. P. Gajendran, R. Saraswathi. Proc. 2nd International Conf. on Emerging Adaptive Systems and Technologies, p. 183, Kumaracoil, Tamilnadu, India, 25-27 October (2007).
- 119. J. Shi, D. J. Guo, Z. Wang, H. L. Li. J. Solid State Electrochem. 9, 634 (2005). (http://dx.doi.org/10.1007/s10008-004-0624-8)
- 120. Z. Z. Zhu, Z. Wang, H. L. Lin. Appl. Surf. Sci. 254, 2934 (2008). (http://dx.doi.org/10.1016/j.apsusc.2007.10.033)
- 121. Z. Wang, Z. Z. Zhu, J. Shi, H. L. Li. Appl. Surf. Sci. 253, 8811 (2007). (http://dx.doi.org/10.1016/j.apsusc.2007.03.005)
- 122. Y. Qiao, C. M. Li, S. J. Bao, Q. L. Bao. J. Power Sources 170, 79 (2007). (http://dx.doi.org/10.1016/j.jpowsour.2007.03.048)
- 123. H. Bai, G. Shi. Sensors 7, 267 (2007). (http://dx.doi.org/10.3390/s7030267)
- 124. D. D. Borole, U. R. Kaapadi, P. P. Mahulikar, D. G. Hundiwale. J. Mater. Sci. 9, 1 (2006).
- 125. M. Gerard, A. Chaubey, B. D. Malhotra. Biosens. Bioelectron. 17, 345 (2002). (http://dx.doi.org/10.1016/S0956-5663(01)00312-8)
- 126. B. D. Malhotra, A. Chaubey, S. P. Singh. Anal. Chim. Acta 578, 59 (2006). (http://dx.doi.org/10.1016/j.aca.2006.04.055)
- 127. Q. Zhao, Z. Gan, Q. Zhuang. Electroanalysis 14, 1609 (2002). (http://dx.doi.org/10.1002/elan.200290000)
- 128. S. Sherigara, W. Kutner, F. D. Souza. Electroanalysis 15, 753 (2003). (http://dx.doi.org/10.1002/elan.200390094)
- 129. Y. Lin. S. Taylor, H. Li, A. S. Fernando, L. Qu, W. Wang, L. Gu, B. Zhou, Y. P. Sun. J. Mater. Chem. 14, 527 (2004). (http://dx.doi.org/10.1039/b314481j)
- 130. K. Gong, Y. Yan, M. Zhang, L. Su, S. Xiong, L. Mao. Anal. Sci. 21, 1383 (2005). (http://dx.doi.org/10.2116/analsci.21.1383)
- 131. J. J. Gooding. Electrochim. Acta 50, 3049 (2005). (http://dx.doi.org/10.1016/j.electacta.2004.08.052)
- 132. P. He, Y. Xu, Y. Fang. Microchim. Acta 152, 175 (2006). (http://dx.doi.org/10.1007/s00604-005-0445-1)
- 133. G. G. Wildgoose, C. E. Banks, H. C. Leventis, R. G. Compton. Microchim. Acta 152, 187 (2006). (http://dx.doi.org/10.1007/s00604-005-0449-x)
- 134. A. Merkoci. Microchim. Acta 152, 157 (2006). (http://dx.doi.org/10.1007/s00604-005-0439-z)
- 135. G. A. Rivas, M. D. Rubianes, M. C. Rodriguez, N. F. Ferreyra, G. L. Luque, M. L. Pedano, S. A. Miscoria, C. Parrado. Talanta 74, 291 (2007). (http://dx.doi.org/10.1016/j.talanta.2007.10.013)
- 136. S. N. Kim, J. F. Rusling, F. Papadimitrakopoulos. Adv. Mater. 19, 3214 (2007). (http://dx.doi.org/10.1002/adma.200700665)
- 137. M. Kaempgen, S. Roth. J. Electroanal. Chem. 586, 72 (2006). (http://dx.doi.org/10.1016/j.jelechem.2005.09.009)
- 138. N. F. Anglada, M. Kaempgen, S. Roth. Phys. Status Solidi B 243, 3519 (2006). (http://dx.doi.org/10.1002/pssb.200669220)
- 139. L. Valentini, V. Bavastrello, E. Stura, I. Armentano, C. Nicolini, J. M. Kenny. Chem. Phys. Lett. 383, 617 (2004). (http://dx.doi.org/10.1016/j.cplett.2003.11.091)
- 140. L. Valentini, J. M. Kenny. Polymer 46, 6715 (2005). (http://dx.doi.org/10.1016/j.polymer.2005.05.025)
- 141. Y. Li, H. Wang, X. Cao, M. Yuan, M. Yang. Nanotechnology 19, 1 (2008).
- 142. Y. Wanna, N. Srisukhumbowornchai, A. Tuantranont, A. Wisitsoraat, N. Thavarungkul, P. Singjai. J. Nanosci. Nanotechnol. 6, 3893 (2006). (http://dx.doi.org/10.1166/jnn.2006.675)
- 143. P. Santhosh, K. M. Manesh, A. I. Gopalan, K. P. Lee. Sens. Actuators, B 125, 92 (2007). (http://dx.doi.org/10.1016/j.snb.2007.01.044)
- 144. M. Guo, J. Chen, J. Li, B. Tao, S. Yao. Anal. Chim. Acta 532, 71 (2005). (http://dx.doi.org/10.1016/j.aca.2004.10.045)
- 145. Y. Lin, X. Cui. Chem. Commun. 2226 (2005). (http://dx.doi.org/10.1039/b500417a)
- 146. X. Gao, W. Wei, L. Yang, M. Guo. Electroanalysis 18, 485 (2006). (http://dx.doi.org/10.1002/elan.200503409)
- 147. M. Li, L. Jing. Electrochim. Acta 52, 3250 (2007). (http://dx.doi.org/10.1016/j.electacta.2006.10.001)
- 148. E. Granot, B. Basnar, Z. Cheglakov, E. Katz, I. Willner. Electroanalysis 18, 26 (2006). (http://dx.doi.org/10.1002/elan.200503403)
- 149. J. Liu, S. Tian, W. Knoll. Langmuir 21, 5596 (2005). (http://dx.doi.org/10.1021/la0501233)
- 150. J. Zeng, X. Gao, W. Wei, X. Zhai, J. Yin, L. Wu, X. Liu, K. Liu, S. Gong. Sens. Actuators, B 120, 595 (2007). (http://dx.doi.org/10.1016/j.snb.2006.03.016)
- 151. S. R. Ali, Y. Ma, R. R. Parajuli, Y. Balogun, W. Y. C. Lai, H. He. Anal. Chem. 79, 2583 (2007). (http://dx.doi.org/10.1021/ac062068o)
- 152. S. R. Ali, R. R. Parajuli, Y. Ma, Y. Balogun, H. He. J. Phys. Chem. B 111, 12275 (2007). (http://dx.doi.org/10.1021/jp073705x)
- 153. T. Yin, W. Wei, J. Zeng. Anal. Bioanal. Chem. 386, 2087 (2006). (http://dx.doi.org/10.1007/s00216-006-0845-z)
- 154. Z. Wang, J. Yean, M. Li, D. Han, Y. Zhang, Y. Shen, L. Niu, A. Tvaska. J. Electroanal. Chem. 599, 121 (2007). (http://dx.doi.org/10.1016/j.jelechem.2006.09.021)
- 155. D. Pan, J. Chen, S. Yao, W. Tao, L. Nie. Anal. Sci. 21, 367 (2005). (http://dx.doi.org/10.2116/analsci.21.367)
- 156. P. Santhosh, K. M. Manesh, A. I. Gopalan, K. P. Lee. Anal. Chim. Acta 575, 32 (2006). (http://dx.doi.org/10.1016/j.aca.2006.05.075)
- 157. Y. Zou, L. Sun, F. Xu. Talanta 72, 437 (2007). (http://dx.doi.org/10.1016/j.talanta.2006.11.001)
- 158. Y. Zou, L. Sun, F. Xu. Biosens. Bioelectron. 22, 2669 (2007). (http://dx.doi.org/10.1016/j.bios.2006.10.035)
- 159. K. Kaneto, M. Kaneko, Y. Min. A. G. MacDiarmid. Synth. Met. 71, 2211 (1995). (http://dx.doi.org/10.1016/0379-6779(94)03226-V)
- 160. E. Smela, W. Lu, B. R. Mattes. Synth. Met. 151, 25 (2005). (http://dx.doi.org/10.1016/j.synthmet.2005.03.009)
- 161. G. M. Spinks, L. Liu, G. G. Wallace, D. Zhou. Adv. Funct. Mater. 12, 437 (2002). (http://dx.doi.org/10.1002/1616-3028(20020618)12:6/7<437::AID-ADFM437>3.0.CO;2-I)
- 162. S. Hara, T. Zama, W. Takashima, K. Kaneto. Polym. J. 36, 151 (2004). (http://dx.doi.org/10.1295/polymj.36.151)
- 163. R. H. Baughman, C. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks. G. G. Wallace, A. Mazzoldi, D. D. Rossa, A. G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz. Science 284, 1340 (1999). (http://dx.doi.org/10.1126/science.284.5418.1340)
- 164. Y. Yun, V. Shanov, Y. Tu, M. Schulz, S. Yarmolenko, S. Neralla, J. Sankar S. Subramaniam. Nano Lett. 6, 689 (2006). (http://dx.doi.org/10.1021/nl052435w)
- 165. B. J. Landi, R. P. Raffaelle, M. J. Heben, J. L. Alleman, W. VanDerveer, T. Gennett. Nano Lett. 2, 1329 (2002). (http://dx.doi.org/10.1021/nl025800h)
- 166. X. Yu, R. Rajamani, K. A. Stelson, T. Cui. Sen. Actuators, A 132, 626 (2006).
- 167. M. Tahhan, V. T. Truong, G. M. Spinks, G. G. Wallace. Smart Mater. Struct. 12, 626 (2003). (http://dx.doi.org/10.1088/0964-1726/12/4/313)
- 168. G. M. Spinks, B. Xi, V. T. Truong, G. G. Wallace. Synth. Met. 151, 85 (2005). (http://dx.doi.org/10.1016/j.synthmet.2005.03.006)
- 169. G. M. Spinks, V. Mottaghitalab, M. B. Samani, P. G. Whitten, G. G. Wallace. Adv. Mater. 18, 637 (2006). (http://dx.doi.org/10.1002/adma.200502366)
- 170. G. M. Spinks, S. R. Shin, G. G. Wallace, P. G. Whitten, I. Y. Kim, S. I. Kim, S. J. Kim. Sens. Actuators, B 21, 616 (2007). (http://dx.doi.org/10.1016/j.snb.2006.04.103)
- 171. S. Yun, J. Kim, Z. Ounaies. Smart Mater. Struct. 15, N61 (2006).
- 172. S. Yun, J. Kim. Synth. Met. 157, 523 (2007). (http://dx.doi.org/10.1016/j.synthmet.2007.05.016)
- 173. S. Yun, J. Kim. J. Phys. D: Appl. Phys. 39, 2580 (2006). (http://dx.doi.org/10.1088/0022-3727/39/12/016)
- 174. C. Klinke, J. Chen, A. Afzali, P. Avouris. Nano Lett. 5, 555 (2005). (http://dx.doi.org/10.1021/nl048055c)
- 175. P. C. Ramamurthy, W. R. Harell, R. V. Gregory, B. Sadanadan, A. M. Rao. Synth. Met. 137, 1497 (2003). (http://dx.doi.org/10.1016/S0379-6779(02)01200-6)
- 176. G. B. Blanchet, C. R. Fincher, F. Gao. Appl. Phys. Lett. 82, 1290 (2003). (http://dx.doi.org/10.1063/1.1553991)
- 177. M. Lefenfeld, G. Blanchet, J. A. Rogers. Adv. Mater. 15, 1188 (2003). (http://dx.doi.org/10.1002/adma.200304841)
- 178. W. R. Small, F. Masdarolomoor, G. G. Wallace, M. Panhuis. J. Mater. Chem. 17, 4359 (2007). (http://dx.doi.org/10.1039/b712940h)
- 179. M. Panhuis, J. Wu, S. A. Ashraf, G. G. Wallace. Synth. Met. 157, 358 (2007). (http://dx.doi.org/10.1016/j.synthmet.2007.04.010)
- 180. L. Hu, G. Gruner, D. Li, R. B. Kaner, J. Cech. J. Appl. Phys. 101, 1 (2007).