Pure Appl. Chem., 2008, Vol. 80, No. 11, pp. 2283-2295
http://dx.doi.org/10.1351/pac200880112283
Nanostructured anode materials for Li-ion batteries
References
- 1. J. Maier. Nat. Mater. 4, 805 (2005). (http://dx.doi.org/10.1038/nmat1513)
- 2. A. S. Arico, P. G. Bruce, B. Scrosati, J. M. Tarascon, W. V. Schalkwijk. Nat. Mater. 4, 366 (2005). (http://dx.doi.org/10.1038/nmat1368)
- 3. J. Maier. Faraday Discuss. 134, 51 (2007). (http://dx.doi.org/10.1039/b603559k)
- 4. Y. F. Zhukovskii, P. Balaya, E. A. Kotomin, J. Maier. Phys. Rev. Lett. 96, 58302 (2006). (http://dx.doi.org/10.1103/PhysRevLett.96.058302)
- 5. N. Li, C. R. Martin, B. Scrosati. Electrochem. Solid State Lett. 3, 316 (2000). (http://dx.doi.org/10.1149/1.1391134)
- 6. N. Li, C. R. Martin. J. Electrochem. Soc. 148, A164 (2001). (http://dx.doi.org/10.1149/1.1342167)
- 7. M. Winter, J. O. Besenhard. Electrochim. Acta 45, 31 (1999). (http://dx.doi.org/10.1016/S0013-4686(99)00191-7)
- 8. T. Moritaz, N. Takami. J. Electrochem. Soc. 153, A425 (2006). (http://dx.doi.org/10.1149/1.2142295)
- 9. F. Jiao, K. M. Shaju, P. G. Bruce. Angew. Chem., Int. Ed. 44, 6550 (2005). (http://dx.doi.org/10.1002/anie.200501663)
- 10. T. Zhang, L. J. Fu, J. Gao, L. C. Yang, Y. P. Wu, H. Q. Wu. Pure Appl. Chem. 78, 1889 (2006). (http://dx.doi.org/10.1351/pac200678101889)
- 11. T. Zhang, J. Gao, H. P. Zhang, L. C. Yang, Y. P. Wu, H. Q. Wu. Electrochem. Commun. 9, 886 (2007). (http://dx.doi.org/10.1016/j.elecom.2006.11.026)
- 12. L. J. Fu, H. Liu, H. P. Zhang, C. Li, T. Zhang, Y. P. Wu, R. Holze, H. Q. Wu. Electrochem. Commun. 8, 1 (2006). (http://dx.doi.org/10.1016/j.elecom.2005.10.006)
- 13. L. J. Fu, T. Zhang, Q. Cao, H. P. Zhang, Y. P. Wu. Electrochem. Commun. 9, 2140 (2007). (http://dx.doi.org/10.1016/j.elecom.2007.06.009)
- 14. L. C. Yang, Q. S. Gao, Y. H. Zhang, Y. Tang, Y. P. Wu. Electrochem. Commun. 10, 118 (2008). (http://dx.doi.org/10.1016/j.elecom.2007.11.009)
- 15. N. H. Zhao, G. J. Wang, Y. Huang, B. Wang, B. D. Yao, Y. P. Wu. Chem. Mater. 20, 2612 (2008). (http://dx.doi.org/10.1021/cm703353y)
- 16. Y. P. Wu, X. B. Dai, J. Q. Ma, Y. J. Chen. Lithium Ion BatteriesPractice and Applications, Chemical Industry Press, Beijing (2004).
- 17. J. O. Bensenhard, J. Yang, M. Winter. J. Power Sources 68, 87 (1997). (http://dx.doi.org/10.1016/S0378-7753(96)02547-5)
- 18. H. Li, X. Huang, L. Chen. Solid State Ionics 135, 181 (2000). (http://dx.doi.org/10.1016/S0167-2738(00)00362-3)
- 19. T. Moritaz, N. Takami. J. Electrochem. Soc. 153, A425 (2006). (http://dx.doi.org/10.1149/1.2142295)
- 20. Y. Zhang, Z. W. Fu, Q. Z. Qin. Electrochem. Commun. 6, 484 (2004). (http://dx.doi.org/10.1016/j.elecom.2004.03.012)
- 21. Y. Liu, K. Hanai, T. Matsumura, N. Imanishi, A. Hirano, Y. Takeda. Electrochem. Solid State Lett. 7, A492 (2004). (http://dx.doi.org/10.1149/1.1818021)
- 22. S. Hwang, H. Lee, S. Jang, S. Lee, H. Baik, J. Lee. Electrochem. Solid State Lett. 4, A97 (2001). (http://dx.doi.org/10.1149/1.1375176)
- 23. J. R. Dahn, J. W. Jiang, L. M. Moshurchak, M. D. Fleischauer, C. Buhrmester, L. J. Krause. J. Electrochem. Soc. 152, A1283 (2005). (http://dx.doi.org/10.1149/1.1906025)
- 24. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Gratzel. Nat. Mater. 2, 402 (2003). (http://dx.doi.org/10.1038/nmat904)
- 25. A. Hagfeldt, M. Gratzel. Chem. Rev. 95, 49 (1995). (http://dx.doi.org/10.1021/cr00033a003)
- 26. Z.-R. Tian, W. Tong, J.-Y. Wang, N.-G. Duan, V. V. Krishnan, S. L. Suib. Science 276, 926 (1997). (http://dx.doi.org/10.1126/science.276.5314.926)
- 27. Y. C. Yeh, T. T. Tseng, D. A. Chang. J. Am. Ceram. Soc. 73, 1992 (1990). (http://dx.doi.org/10.1111/j.1151-2916.1990.tb05257.x)
- 28. Y. K. Zhou, L. Cao, F. B. Zhang, B. L. He, H. L. Li. J. Electrochem. Soc. 150, A1246 (2003). (http://dx.doi.org/10.1149/1.1597883)
- 29. A. H. Whitehead, J. M. Elliott, J. R. Owen. J. Power Sources 33, 81 (1999).
- 30. J. Yang, Y. Takeda, N. Imanishi, O. Yamamoto. J. Electrochem. Soc. 146, 4009 (1999). (http://dx.doi.org/10.1149/1.1392584)
- 31. J. Yang, Y. Takeda, N. Imanishi, T. Ichikawa, O. Yamamoto. J. Power Sources 79, 220 (1999). (http://dx.doi.org/10.1016/S0378-7753(99)00180-9)
- 32. N. Li, C. R. Martin, B. Scrosati. Electrochem. Solid State Lett. 3, 316 (2000). (http://dx.doi.org/10.1149/1.1391134)
- 33. N. Li, C. R. Martin. J. Electrochem. Soc. 148, A164 (2001). (http://dx.doi.org/10.1149/1.1342167)
- 34. I. Kim, P. N. Kumta, G. E. Blomgren. Electrochem. Solid State Lett. 3, 493 (2000). (http://dx.doi.org/10.1149/1.1391189)
- 35. S. Hwang, H. Lee, S. Jang, S. M. Lee, S. J. Lee, H. Baik, J. Lee. Electrochem. Solid State Lett. 4, A97 (2001). (http://dx.doi.org/10.1149/1.1375176)
- 36. K. T. Lee, Y. S. Jung, S. M. Oh. J. Am. Chem. Soc. 125, 5652 (2003). (http://dx.doi.org/10.1021/ja0345524)
- 37. Y. G. Guo, Y. S. Hu, J. Maier. Chem. Commun. 26, 2783 (2006). (http://dx.doi.org/10.1039/b605090e)
- 38. B. Zhang, Y. Yuan, Y. Wang, Z. W. Fu. Electrochem. Solid State Lett. 9, A101 (2006). (http://dx.doi.org/10.1149/1.2159297)
- 39. J. J. Auborn, Y. L. Barberio. J. Electrochem. Soc. 134, 638 (1987). (http://dx.doi.org/10.1149/1.2100521)
- 40. Y. Liang, S. Yang, Z. Yi, J. Sun, Y. Zhou. Mater. Chem. Phys. 93, 395 (2005). (http://dx.doi.org/10.1016/j.matchemphys.2005.03.034)
- 41. F. Jiao, K. M. Shaju, P. G. Bruce. Angew. Chem., Int. Ed. 44, 6550 (2005). (http://dx.doi.org/10.1002/anie.200501663)
- 42. H. Liu, L. J. Fu, H. P. Zhang, J. Gao, C. Li, Y. P. Wu, H. Q. Wu. Electrochem. Solid State Lett. 9, A529 (2006). (http://dx.doi.org/10.1149/1.2349490)
- 43. C. N. R. Rao, M. Nath. Dalton Trans. 1, 1 (2003). (http://dx.doi.org/10.1039/b208990b)
- 44. B. Patzke, F. Krumeich, R. Nesper. Angew. Chem., Int. Ed. 41, 2446 (2002). (http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K)
- 45. W. Yu, X. Li, X. Gao, F. Wu. J. Phys. Chem. B 109, 17078 (2005). (http://dx.doi.org/10.1021/jp0526905)
- 46. J. Hu, X. Ma, N. Shang, Z. Xie, N. Wong, C. Lee, S. Lee. J. Phys. Chem. B 106, 3823 (2002). (http://dx.doi.org/10.1021/jp0125552)
- 47. Z. Pan, Z. Dai, L. Wang. Science 291, 1947 (2001). (http://dx.doi.org/10.1126/science.1058120)
- 48. Z. Dai, J. Gole, J. Stout, Z. Wang. J. Phys. Chem. B 106, 1274 (2002). (http://dx.doi.org/10.1021/jp013214r)
- 49. R. Zhang, Y. Lifshitz, S. Lee. Adv. Mater. 15, 635 (2003). (http://dx.doi.org/10.1002/adma.200301641)
- 50. N. Ramgir, I. Mulla, K. Vijayamohanan. J. Phy. Chem. B 108, 14815 (2004). (http://dx.doi.org/10.1021/jp046859a)
- 51. Y. Wang, X. Jiang, Y. Xia. J. Am. Chem. Soc. 125, 16176 (2003). (http://dx.doi.org/10.1021/ja037743f)
- 52. M. Zheng, G. Li, X. Zhang, S. Huang, Y. Lei, L. Zhang. Chem. Mater. 13, 3859 (2001). (http://dx.doi.org/10.1021/cm010084q)
- 53. H. Cao, X. Qiu, Y. Liang, L. Zhang, M. Zhao, Q. Zhu. ChemPhysChem 7, 497 (2006). (http://dx.doi.org/10.1002/cphc.200500452)
- 54. L. C. Yang, Q. S. Gao, Y. Tang, Y. P. Wu, R. Holze. J. Power Sources 179, 357 (2008). (http://dx.doi.org/10.1016/j.jpowsour.2007.12.099)
- 55. L. J. Fu, H. P. Zhang, Q. Cao, G. J. Wang, L. C. Yang, Y. P. Wu. Microporous Mesoporous Mater. (2008). Accepted for publication.
- 56. W.-Y. Li, L.-N. Xu, J. Chen. Adv. Funct. Mater. 15, 851 (2005). (http://dx.doi.org/10.1002/adfm.200400429)
- 57. H. K. Liu, G. X. Wang, Z. Guo, J. Wang, K. Konstantinov. J. Nanosci. Nanotechnol. 6, 1 (2006). (http://dx.doi.org/10.1166/jnn.2006.103)