Pure Appl. Chem., 2008, Vol. 80, No. 1, pp. 45-57
http://dx.doi.org/10.1351/pac200880010045
Nanoscale surface chemistry in self- and directed-assembly of organic molecules on solid surfaces and synthesis of nanostructured organic architectures*
References
- 1. F. Tao. Ph.D. dissertation, Princeton University (2006).
- 2. F. Tao, Y. Cai, S. L. Bernasek. Langmuir 21, 1269 (2005). (http://dx.doi.org/10.1021/la047921y)
- 3. F. Tao, S. L. Bernasek. Langmuir 23, 3513 (2007). (http://dx.doi.org/10.1021/la0613631)
- 4. G. C. McGonigal, R. H. Bernhadt, D. J. Thomson. Appl. Phys. Lett. 57, 28 (1990) (http://dx.doi.org/10.1063/1.104234)
- 5. G. Watel, F. Thibaudau, J. Cousty. Surf. Sci. 281, L297 (1993). (http://dx.doi.org/10.1016/0039-6028(93)90843-9)
- 6. G. Quinkert, E. Egert, C. Griesinger. Aspects of Organic Chemistry and Structure, VCH, New York (1996).
- 7. The energies of the ap- and sp-conformations, and the structure upon linear distortion were calculated with Gaussian 98 at the theory level of B3LYP with a basis set of 6-31G(d).
- 8. W. Liang, M. H. Whangbo, A. Wawkusschewski, H. J. Kantow, S. N. Magnov. Adv. Mater. 5, 817 (1993). (http://dx.doi.org/10.1002/adma.19930051106)
- 9. C. L. Claypool, F. Faglioni, W. A. Goddard, W. B. Gray, N. S. Lewis, R. A. Marcus. J. Phys. Chem. B 101, 5978 (1997). (http://dx.doi.org/10.1021/jp9701799)
- 10. Y. Cai, S. L. Bernasek. J. Am. Chem. Soc. 126, 14234 (2004). (http://dx.doi.org/10.1021/ja045769g)
- 11. B. Venkataraman, J. J. Breen, G. W. Flynn. J. Phys. Chem. 99, 6608 (1995). (http://dx.doi.org/10.1021/j100017a050)
- 12. F. Tao, S. L. Bernasek. J. Phys. Chem. B 109, 6233 (2005). (http://dx.doi.org/10.1021/jp0452397)
- 13. F. Tao, J. Goswami, S. L. Bernasek. J. Phys. Chem. B 110, 19562 (2006). (http://dx.doi.org/10.1021/jp063923a)
- 14. F. Tao, J. Goswami, S. L. Bernasek. J. Phys. Chem. B 110, 4199 (2006). (http://dx.doi.org/10.1021/jp054557i)
- 15. F. Tao, S. L. Bernasek. Chem. Rev. 107, 1408 (2007). (http://dx.doi.org/10.1021/cr050258d)
- 16. F. Tao, S. L. Bernasek. J. Am. Chem. Soc. 127, 12750 (2005). (http://dx.doi.org/10.1021/ja050365p)
- 17. J. T. Yates. Science 275, 339 (1998).
- 18. H. N. Waltenburg, J. T. Yates. Chem. Rev. 95, 1589 (1995). (http://dx.doi.org/10.1021/cr00037a600)
- 19. K. Takayanagi, T. Tanishiro, S. Takahashi, M. Takahashi. J. Vac. Sci. Technol. A 3, 1502 (1985). (http://dx.doi.org/10.1116/1.573160)
- 20. R. J. Hamers, S. K. Coulter, M. D. Ellison, J. S. Hovis, D. F. Padowitz, M. P. Schwartz, C. M. Greenlief, J. N. Russell. Acc. Chem. Res. 33, 617 (2000). (http://dx.doi.org/10.1021/ar970281o)
- 21. S. F. Bent. J. Phys. Chem. B 106, 2830 (2002). (http://dx.doi.org/10.1021/jp012995t)
- 22. S. F. Bent. Surf. Sci. 500, 879 (2002). (http://dx.doi.org/10.1016/S0039-6028(01)01553-9)
- 23. M. A. Filler, S. F. Bent. Prog. Surf. Sci. 73, 1 (2003). (http://dx.doi.org/10.1016/S0079-6816(03)00035-2)
- 24. R. A. Wolkow. Annu. Rev. Phys. Chem. 50, 413 (1999). (http://dx.doi.org/10.1146/annurev.physchem.50.1.413)
- 25. F. Tao, G. Q. Xu. Acc. Chem. Res. 37, 882 (2004). (http://dx.doi.org/10.1021/ar0400488)
- 26. F. Tao, S. L. Bernasek. J. Am. Chem. Soc. 129, 4815 (2007). (http://dx.doi.org/10.1021/ja070182y)