CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2008, Vol. 80, No. 1, pp. 17-29

http://dx.doi.org/10.1351/pac200880010017

Beyond switches: Rotaxane- and catenane-based synthetic molecular motors*

Euan R. Kay and David A. Leigh

School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, UK

References

  • 1. M. Schliwa (Ed.). Molecular Motors, Wiley-VCH, Weinheim (2003).
  • 2. (a). V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart. Angew. Chem., Int. Ed. 39, 3349 (2000); (http://dx.doi.org/10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X)
  • 2. (b). V. Balzani, M. Venturi, A. Credi. Molecular Devices and Machines. A Journey into the Nanoworld, Wiley-VCH, Weinheim (2003);
  • 2. (c). K. Kinbara, T. Aida. Chem. Rev. 105, 1377 (2005); (http://dx.doi.org/10.1021/cr030071r)
  • 2. (d). E. R. Kay, D. A. Leigh. In Functional Artificial Receptors, T. Schrader, A. D. Hamilton, (Eds.), pp. 333-406, Wiley-VCH, Weinheim (2005); (http://dx.doi.org/10.1002/352760572X.ch7)
  • 2. (e). W. R. Browne, B. L. Feringa. Nat. Nanotechnol. 1, 25 (2006); (http://dx.doi.org/10.1038/nnano.2006.45)
  • 2. (f). E. R. Kay, D. A. Leigh, F. Zerbetto. Angew. Chem., Int. Ed. 46, 72 (2007). (http://dx.doi.org/10.1002/anie.200504313)
  • 3. (a). E. M. Purcell. Am. J. Phys. 45, 3 (1977); (http://dx.doi.org/10.1119/1.10903)
  • 3. (b). R. D. Astumian. Sci. Am. 285 (1), 56 (2001);
  • 3. (c). R.A.L. Jones. Soft Machines: Nanotechnology and Life, Oxford University Press, Oxford (2004).
  • 4. J. Siegel. Science 310, 63 (2005). (http://dx.doi.org/10.1126/science.1118765)
  • 5. "Motor molecules" can also act as switches; the change in the distribution or position of the components can be used to affect a system as a function of state.
  • 6. (a). G. Schill. Catenanes, Rotaxanes and Knots, Academic Press, New York (1971);
  • 6. (b). Molecular Catenanes Rotaxanes and Knots, J.-P. Sauvage, C. O. Dietrich-Buchecker (Eds.), Wiley-VCH, Weinheim (1999).
  • 7. M. C. T. Fyfe, P. T. Glink, S. Menzer, J. F. Stoddart, A. J. P. White, D. J. Williams. Angew. Chem., Int. Ed. Engl. 36, 2068 (1997). (http://dx.doi.org/10.1002/anie.199720681)
  • 8. (a). G. N. Lewis. Proc. Natl. Acad. Sci. USA 11, 179 (1925); (http://dx.doi.org/10.1073/pnas.11.3.179)
  • 8. (b). L. Onsager. Phys. Rev. 37, 405 (1931). (http://dx.doi.org/10.1103/PhysRev.37.405)
  • 9. H. Tian, Q.-C. Wang. Chem. Soc. Rev. 35, 361 (2006). (http://dx.doi.org/10.1039/b512178g)
  • 10. E. R. Kay, D. A. Leigh. Nature 440, 286 (2006). (http://dx.doi.org/10.1038/440286b)
  • 11. (a). E. R. Kay, D. A. Leigh. Top. Curr. Chem. 262, 133 (2005);
  • 11. (b). D. A. Leigh, E. M. Perez. Top. Curr. Chem. 265, 185 (2006);
  • 11. (c). J. Berna, G. Bottari, D. A. Leigh, E. M. Perez. Pure Appl. Chem. 79, 39 (2007). (http://dx.doi.org/10.1351/pac200779010039)
  • 12. B. Mahon. The Man Who Changed Everything: The Life of James Clerk Maxwell, John Wiley, Chichester (2004).
  • 13. (a). J. C. Maxwell. Letter to P. G. Tait, 11 December 1867. Reproduced in The Scientific Letters and Papers of James Clerk Maxwell Vol. II 1862-1873, P. M. Harman (Ed.), pp. 331-332, Cambridge University Press, Cambridge (1995);
  • 13. (b). J. C. Maxwell. Theory of Heat, Chap. 22, Longmans, Green, London (1871);
  • 13. (c). Maxwell introduced the idea of a "pressure demon" in a later letter to Tait (believed to date from early 1875). Reproduced in The Scientific Letters and Papers of James Clerk Maxwell Vol. III 1874-1879, P. M. Harman (Ed.), pp. 185-187, Cambridge University Press, Cambridge (2002). A pressure demon would operate in a system linked to a constant-temperature reservoir with the sole effect of using energy transferred as heat from that reservoir to do work. This is in conflict with the Kelvin-Planck form of the Second Law whereas the temperature demon challenges the Clausius definition.
  • 14. Maxwell's Demon 2. Entropy, Classical and Quantum Information, Computing, H. S. Leff, A. F. Rex (Eds.), Institute of Physics Publishing, Bristol (2003).
  • 15. (a). W. Thomson. Nature 9, 441 (1874); (http://dx.doi.org/10.1038/009441c0)
  • 15. (b). W. Thomson. Proc. R. Soc. Edinb. 8, 325 (1874);
  • 15. (c). W. Thomson. R. Soc. Proc. 9, 113 (1879);
  • 15. (d). M. von Smoluchowski. Physik. Z. 13, 1069 (1912);
  • 15. (e). M. von Smoluchowski. In Vortrage uber die Kinetische Theorie der Materie und der Elektrizitat, M. Planck (Ed.), pp. 89-121, Teubner, Leipzig (1914);
  • 15. (f). L. Szilard. Z. Phys. 53, 840 (1929); (http://dx.doi.org/10.1007/BF01341281)
  • 15. (g). J. von Neumann. Mathematische Grundlagen der Quanten Mechanik, Springer-Verlag, Berlin (1932);
  • 15. (h). L. Brillouin. J. Appl. Phys. 22, 334 (1951); (http://dx.doi.org/10.1063/1.1699951)
  • 15. (i). D. Gabor. In Progress in Optics, Vol. 1, E. Wolf (Ed.), pp. 111-153, North-Holland, Amsterdam (1961);
  • 15. (j). R. P. Feynman, R. B. Leighton, M. Sands. The Feynman Lectures on Physics, Vol. 1, Chap. 46, Addison Wesley, Reading, MA (1963);
  • 15. (k). W. Ehrenberg. Sci. Am. 217 (5), 103 (1967);
  • 15. (l). O. Penrose. Foundations of Statistical Mechanics, Pergamon Press, Oxford (1970);
  • 15. (m). C. H. Bennett. Sci. Am. 257 (5), 88 (1987).
  • 16. R. D. Astumian, P. Hanggi. Phys. Today 55 (11), 33 (2002). (http://dx.doi.org/10.1063/1.1535005)
  • 17. (a). P. Hanggi, R. Bartussek. In Nonlinear Physics of Complex Systems: Current status and future trends: Lecture Notes in Physics, Vol. 476, J. Parisi, S. C. Muller, W. Zimmermann, (Eds.), pp. 294-308, Springer, Berlin (1996);
  • 17. (b). R. D. Astumian. Science 276, 917 (1997); (http://dx.doi.org/10.1126/science.276.5314.917)
  • 17. (c). M. Bier. Contemp. Phys. 38, 371 (1997); (http://dx.doi.org/10.1080/001075197182180)
  • 17. (d). F. Julicher, A. Ajdari, J. Prost. Rev. Mod. Phys. 69, 1269 (1997); (http://dx.doi.org/10.1103/RevModPhys.69.1269)
  • 17. (e). Special issue on "The constructive role of noise in fluctuation driven transport and stochastic resonance", Chaos 8, 533 (1998); (http://dx.doi.org/10.1063/1.166334)
  • 17. (f). P. Reimann. Phys. Rep. 361, 57 (2002); (http://dx.doi.org/10.1016/S0370-1573(01)00081-3)
  • 17. (g). P. Reimann, P. Hanggi. Appl. Phys. A 75, 169 (2002); (http://dx.doi.org/10.1007/s003390201331)
  • 17. (h). J. M. R. Parrondo, B. J. De Cisneros. Appl. Phys. A 75, 179 (2002); (http://dx.doi.org/10.1007/s003390201332)
  • 17. (i). B. J. Gabrys, K. Pesz, S. J. Bartkiewicz. Physica A 336, 112 (2004); (http://dx.doi.org/10.1016/j.physa.2004.01.016)
  • 17. (j). H. Linke, M. T. Downton, M. J. Zuckermann. Chaos 15, 026111 (2005). (http://dx.doi.org/10.1063/1.1871432)
  • 18. M. N. Chatterjee, E. R. Kay, D. A. Leigh. J. Am. Chem. Soc. 128, 4058 (2006). (http://dx.doi.org/10.1021/ja057664z)
  • 19. J. V. Hernandez, E. R. Kay, D. A. Leigh. Science 306, 1532 (2004). (http://dx.doi.org/10.1126/science.1103949)
  • 20. V. Serreli, C.-F. Lee, E. R. Kay, D. A. Leigh. Nature 445, 523 (2007). (http://dx.doi.org/10.1038/nature05452)
  • 21. C. H. Bennett. Int. J. Theor. Phys. 21, 905 (1982). (http://dx.doi.org/10.1007/BF02084158)
  • 22. R. Landauer. IBM J. Res. Dev. 5, 183 (1961).