CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2007, Vol. 79, No. 5, pp. 851-860

http://dx.doi.org/10.1351/pac200779050851

Li-air batteries: A classic example of limitations owing to solubilities

Ian Kowalczk1, Jeffery Read2 and Mark Salomon1

1 MaxPower, Inc., 141 Christopher Lane, Harleysville, PA 19438, USA
2 U.S. Army Research Laboratory, AMSRL-SE-DC, 2800 Powder Mill Road, Adelphi, MD 20783-1197, USA

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Balaish Moran, Kraytsberg Alexander, Ein-Eli Yair: Realization of an Artificial Three-Phase Reaction Zone in a Li-Air Battery. CHEMELECTROCHEM 2014, 1, 90. <http://dx.doi.org/10.1002/celc.201300055>
  • Rahman Md. Arafat, Wang Xiaojian, Wen Cuie: A review of high energy density lithium–air battery technology. J Appl Electrochem 2014, 44, 5. <http://dx.doi.org/10.1007/s10800-013-0620-8>
  • Kang Jun, Li Oi Lun, Saito Nagahiro: Hierarchical meso–macro structure porous carbon black as electrode materials in Li–air battery. Journal of Power Sources 2014, 261, 156. <http://dx.doi.org/10.1016/j.jpowsour.2014.03.072>
  • Lu Jun, Li Li, Park Jin-Bum, Sun Yang-Kook, Wu Feng, Amine Khalil: Aprotic and Aqueous Li–O2 Batteries. Chem. Rev. 2014, 140411104032007. <http://dx.doi.org/10.1021/cr400573b>
  • Balaish Moran, Kraytsberg Alexander, Ein-Eli Yair: A critical review on lithium–air battery electrolytes. Phys. Chem. Chem. Phys. 2014, 16, 2801. <http://dx.doi.org/10.1039/c3cp54165g>
  • Liu Jun, Zhang Ji-Guang, Yang Zhenguo, Lemmon John P., Imhoff Carl, Graff Gordon L., Li Liyu, Hu Jianzhi, Wang Chongmin, Xiao Jie, Xia Gordon, Viswanathan Vilayanur V., Baskaran Suresh, Sprenkle Vincent, Li Xiaolin, Shao Yuyan, Schwenzer Birgit: Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid. Adv. Funct. Mater. 2013, 23, 929. <http://dx.doi.org/10.1002/adfm.201200690>
  • Trahey Lynn, Karan Naba K., Chan Maria K. Y., Lu Jun, Ren Yang, Greeley Jeffrey, Balasubramanian Mahalingam, Burrell Anthony K., Curtiss Larry A., Thackeray Michael M.: Synthesis, Characterization, and Structural Modeling of High-Capacity, Dual Functioning MnO2 Electrode/Electrocatalysts for Li-O2 Cells. Adv. Energy Mater. 2013, 3, 75. <http://dx.doi.org/10.1002/aenm.201200037>
  • Yamada Tetsuya, Morita Kantaro, Wang Heng, Kume Keita, Yoshikawa Hirofumi, Awaga Kunio: In situ Seamless Magnetic Measurements for Solid-State Electrochemical Processes in Prussian Blue Analogues. Angew. Chem. 2013, 125, 6358. <http://dx.doi.org/10.1002/ange.201301084>
  • Yamada Tetsuya, Morita Kantaro, Wang Heng, Kume Keita, Yoshikawa Hirofumi, Awaga Kunio: In situ Seamless Magnetic Measurements for Solid-State Electrochemical Processes in Prussian Blue Analogues. Angew. Chem. Int. Ed. 2013, 52, 6238. <http://dx.doi.org/10.1002/anie.201301084>
  • Zhu Ding, Zhang Lei, Song Ming, Wang Xiaofei, Mi Rui, Liu Hao, Mei Jun, Lau Leo W. M., Chen Yungui: Intermittent operation of the aprotic Li-O2 battery: the mass recovery process upon discharge interval. J Solid State Electrochem 2013, 17, 2539. <http://dx.doi.org/10.1007/s10008-013-2116-1>
  • Tan Peng, Wei Zhaohuan, Shyy W., Zhao T.S.: Prediction of the theoretical capacity of non-aqueous lithium-air batteries. Applied Energy 2013, 109, 275. <http://dx.doi.org/10.1016/j.apenergy.2013.04.031>
  • Tian Yanyan, Yue Hongjun, Gong Zhengliang, Yang Yong: Enhanced electrochemical performance of fluorinated carbon nanotube as cathode for Li–O2 primary batteries. Electrochimica Acta 2013, 90, 186. <http://dx.doi.org/10.1016/j.electacta.2012.12.008>
  • Safanama Dorsasadat, Damiano Davide, Rao Rayavarapu Prasada, Adams Stefan: Lithium conducting solid electrolyte Li1+xAlxGe2−x(PO4)3 membrane for aqueous lithium air battery. Solid State Ionics 2013. <http://dx.doi.org/10.1016/j.ssi.2013.11.031>
  • Qin Yan, Lu Jun, Du Peng, Chen Zonghai, Ren Yang, Wu Tianpin, Miller Jeffrey T., Wen Jianguo, Miller Dean J., Zhang Zhengcheng, Amine Khalil: In situ fabrication of porous-carbon-supported α-MnO2 nanorods at room temperature: application for rechargeable Li–O2 batteries. Energy Environ. Sci. 2013, 6, 519. <http://dx.doi.org/10.1039/c2ee23621d>
  • Song Min-Kyu, Cairns Elton J., Zhang Yuegang: Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale 2013, 5, 2186. <http://dx.doi.org/10.1039/c2nr33044j>
  • Adams Brian D., Radtke Claudio, Black Robert, Trudeau Michel L., Zaghib Karim, Nazar Linda F.: Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ. Sci. 2013, 6, 1772. <http://dx.doi.org/10.1039/c3ee40697k>
  • Olivares-Marín Mara, Palomino Pablo, Amarilla José Manuel, Enciso Eduardo, Tonti Dino: Effects of architecture on the electrochemistry of binder-free inverse opal carbons as Li–air cathodes in an ionic liquid-based electrolyte. J. Mater. Chem. A 2013, 1, 14270. <http://dx.doi.org/10.1039/c3ta13118a>
  • Zhang Lei-Lei, Wang Zhong-Li, Xu Dan, Zhang Xin-Bo, Wang Li-Min: The development and challenges of rechargeable non-aqueous lithium–air batteries. International Journal of Smart and Nano Materials 2013, 4, 27. <http://dx.doi.org/10.1080/19475411.2012.659227>
  • Park Myounggu, Sun Heeyoung, Lee Hyungbok, Lee Junesoo, Cho Jaephil: Lithium-Air Batteries: Survey on the Current Status and Perspectives Towards Automotive Applications from a Battery Industry Standpoint. Adv. Energy Mater. 2012, 2, 780. <http://dx.doi.org/10.1002/aenm.201200020>
  • Jakes  Peter, Cohn Gil, Ein-Eli Yair, Scheiba Frieder, Ehrenberg Helmut, Eichel  Rüdiger-A.: Limitation of Discharge Capacity and Mechanisms of Air-Electrode Deactivation in Silicon-Air Batteries. ChemSusChem 2012, 5, 2278. <http://dx.doi.org/10.1002/cssc.201200199>
  • Ni Jennifer E., Case Eldon D., Sakamoto Jeffrey S., Rangasamy Ezhiyl, Wolfenstine Jeffrey B.: Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet. J Mater Sci 2012, 47, 7978. <http://dx.doi.org/10.1007/s10853-012-6687-5>
  • Zhang LeiLei, Wang ZhongLi, Xu Dan, Xu JiJing, Zhang XinBo, Wang LiMin: α-MnO2 hollow clews for rechargeable Li-air batteries with improved cyclability. Chin. Sci. Bull. 2012, 57, 4210. <http://dx.doi.org/10.1007/s11434-012-5013-6>
  • Hardwick Laurence J., Bruce Peter G.: The pursuit of rechargeable non-aqueous lithium–oxygen battery cathodes. Current Opinion in Solid State and Materials Science 2012, 16, 178. <http://dx.doi.org/10.1016/j.cossms.2012.04.001>
  • Li Yunfeng, Huang Kan, Xing Yangchuan: A hybrid Li-air battery with buckypaper air cathode and sulfuric acid electrolyte. Electrochimica Acta 2012, 81, 20. <http://dx.doi.org/10.1016/j.electacta.2012.07.060>
  • Crowther Owen, Keeny Daniel, Moureau David M., Meyer Benjamin, Salomon Mark, Hendrickson Mary: Electrolyte optimization for the primary lithium metal air battery using an oxygen selective membrane. J Powder Sources 2012, 202, 347. <http://dx.doi.org/10.1016/j.jpowsour.2011.11.024>
  • Cecchetto Laura, Salomon Mark, Scrosati Bruno, Croce Fausto: Study of a Li–air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid. Journal of Power Sources 2012, 213, 233. <http://dx.doi.org/10.1016/j.jpowsour.2012.04.038>
  • Capsoni Doretta, Bini Marcella, Ferrari Stefania, Quartarone Eliana, Mustarelli Piercarlo: Recent advances in the development of Li–air batteries. Journal of Power Sources 2012, 220, 253. <http://dx.doi.org/10.1016/j.jpowsour.2012.07.123>
  • Bryantsev Vyacheslav S., Faglioni Francesco: Predicting Autoxidation Stability of Ether- and Amide-Based Electrolyte Solvents for Li–Air Batteries. J. Phys. Chem. A 2012, 116, 7128. <http://dx.doi.org/10.1021/jp301537w>
  • Cheng Fangyi, Chen Jun: Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Review 2012, 41, 2172. <http://dx.doi.org/10.1039/c1cs15228a>
  • Hou Junbo, Yang Min, Ellis Michael W., Moore Robert B., Yi Baolian: Lithium oxides precipitation in nonaqueous Li–air batteries. Phys. Chem. Chem. Phys. 2012, 14, 13487. <http://dx.doi.org/10.1039/c2cp42768k>
  • Cui Yanming, Wen Zhaoyin, Liang Xiao, Lu Yan, Jin Jun, Wu Meifen, Wu Xiangwei: A tubular polypyrrole based air electrode with improved O2 diffusivity for Li–O2 batteries. Energy Environ. Sci. 2012, 5, 7893. <http://dx.doi.org/10.1039/c2ee21638h>
  • Asl Nina Mahootcheian, Cheah Seong Shen, Salim Jason, Kim Youngsik: Lithium–liquid battery: harvesting lithium from waste Li-ion batteries and discharging with water. RSC Adv. 2012, 2, 6094. <http://dx.doi.org/10.1039/c2ra20814h>
  • Arruda Thomas M, Kumar Amit, Kalinin Sergei V, Jesse Stephen: The partially reversible formation of Li-metal particles on a solid Li electrolyte: applications toward nanobatteries. Nanotechnology 2012, 23, 325402. <http://dx.doi.org/10.1088/0957-4484/23/32/325402>
  • Andrei P., Zheng J. P., Hendrickson M., Plichta E. J.: Modeling of Li-Air Batteries with Dual Electrolyte. J Electroanal Soc 2012, 159, A770. <http://dx.doi.org/10.1149/2.010206jes>
  • Crowther Owen, Salomon Mark: Oxygen Selective Membranes for Li-Air (O2) Batteries. Membranes 2012, 2, 216. <http://dx.doi.org/10.3390/membranes2020216>
  • Zahoor Awan, Christy Maria, Hwang Yun-Ju, Nahm Kee-Suk: Lithium Air Battery: Alternate Energy Resource for the Future. Journal of Electrochemical Science and Technology 2012, 3, 14. <http://dx.doi.org/10.5229/JECST.2012.3.1.14>
  • Hassoun Jusef, Croce Fausto, Armand Michel, Scrosati Bruno: Investigation of the O2 Electrochemistry in a Polymer Electrolyte Solid-State Cell. Angew Chem 2011, 123, 3055. <http://dx.doi.org/10.1002/ange.201006264>
  • Hassoun Jusef, Croce Fausto, Armand Michel, Scrosati Bruno: Investigation of the O2 Electrochemistry in a Polymer Electrolyte Solid-State Cell. Angew Chem Int Ed 2011, 50, 2999. <http://dx.doi.org/10.1002/anie.201006264>
  • Tran Chris, Kafle Janak, Yang Xiao-Qing, Qu Deyang: Increased discharge capacity of a Li-air activated carbon cathode produced by preventing carbon surface passivation. Carbon 2011, 49, 1266. <http://dx.doi.org/10.1016/j.carbon.2010.11.045>
  • Liu Hao, Xing Yangchuan: Influence of Li ions on the oxygen reduction reaction of platinum electrocatalyst. Electrochemistry Communications 2011, 13, 646. <http://dx.doi.org/10.1016/j.elecom.2011.03.036>
  • Crowther Owen, Meyer Benjamin, Morgan Michael, Salomon Mark: Primary Li-air cell development. J Powder Sources 2011, 196, 1498. <http://dx.doi.org/10.1016/j.jpowsour.2010.08.061>
  • Kraytsberg Alexander, Ein-Eli Yair: Review on Li–air batteries—Opportunities, limitations and perspective. J Powder Sources 2011, 196, 886. <http://dx.doi.org/10.1016/j.jpowsour.2010.09.031>
  • Padbury Richard, Zhang Xiangwu: Lithium–oxygen batteries—Limiting factors that affect performance. J Powder Sources 2011, 196, 4436. <http://dx.doi.org/10.1016/j.jpowsour.2011.01.032>
  • Song Min-Kyu, Park Soojin, Alamgir Faisal M., Cho Jaephil, Liu Meilin: Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater Sci Eng Reports 2011, 72, 203. <http://dx.doi.org/10.1016/j.mser.2011.06.001>
  • Bryantsev Vyacheslav S., Giordani Vincent, Walker Wesley, Blanco Mario, Zecevic Strahinja, Sasaki Kenji, Uddin Jasim, Addison Dan, Chase Gregory V.: Predicting Solvent Stability in Aprotic Electrolyte Li–Air Batteries: Nucleophilic Substitution by the Superoxide Anion Radical (O2•–). J Phys Chem A 2011, 115, 12399. <http://dx.doi.org/10.1021/jp2073914>
  • Zhang Zhengcheng, Lu Jun, Assary Rajeev S., Du Peng, Wang Hsien-Hau, Sun Yang-Kook, Qin Yan, Lau Kah Chun, Greeley Jeffrey, Redfern Paul C.: Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes. J Phys Chem C 2011, 115, 25535. <http://dx.doi.org/10.1021/jp2087412>
  • Zheng J. P., Andrei P., Hendrickson M., Plichta E. J.: The Theoretical Energy Densities of Dual-Electrolytes Rechargeable Li-Air and Li-Air Flow Batteries. J Electrochem Soc 2011, 158, A43. <http://dx.doi.org/10.1149/1.3515330>
  • Zhang Tao, Imanishi Nobuyuki, Hirano Atsushi, Takeda Yasuo, Yamamoto Osamu: Stability of Li/Polymer Electrolyte-Ionic Liquid Composite/Lithium Conducting Glass Ceramics in an Aqueous Electrolyte. Electrochem Solid-State Lett 2011, 14, A45. <http://dx.doi.org/10.1149/1.3545964>
  • Crowther Owen, Meyer Benjamin, Salomon Mark: Methoxybenzene as an Electrolyte Solvent for the Primary Lithium Metal Air Battery. Electrochem Solid-State Lett 2011, 14, A113. <http://dx.doi.org/10.1149/1.3596719>
  • Wolfenstine J.: Stability predictions of solid Li-ion conducting membranes in aqueous solutions. J Materials Sci 2010, 45, 3954. <http://dx.doi.org/10.1007/s10853-010-4522-4>
  • Zhou Haoshen, Wang Yonggang: A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. J Power Sources - 2010, 195, 358. <http://dx.doi.org/10.1016/j.jpowsour.2009.06.109>
  • Wolfenstine J., Allen J.L., Read J., Sakamoto J., Gonalez-Doncel G.: Hot-pressed Li0.33La0.57TiO3. J Power Sources - 2010, 195, 4124. <http://dx.doi.org/10.1016/j.jpowsour.2009.12.109>
  • Zhang Ji-Guang, Wang Deyu, Xu Wu, Xiao Jie, Williford R.E.: Ambient operation of Li/Air batteries. J Power Sources - 2010, 195, 4332. <http://dx.doi.org/10.1016/j.jpowsour.2010.01.022>
  • Zhang Jian, Xu Wu, Liu Wei: Oxygen-selective immobilized liquid membranes for operation of lithium-air batteries in ambient air. J Power Sources - 2010, 195, 7438. <http://dx.doi.org/10.1016/j.jpowsour.2010.05.028>
  • Xu Wu, Xiao Jie, Wang Deyu, Zhang Jian, Zhang Ji-Guang: Effects of Nonaqueous Electrolytes on the Performance of Lithium/Air Batteries. J Electrochem Soc 2010, 157, A219. <http://dx.doi.org/10.1149/1.3269928>
  • Hirano Atsushi, Xie Jian, Takeda Yasuo, Yamamoto Osamu, Sammes Nigel, Zhang Tao, Imanishi Nobuyuki, Shimonishi Yuta: Stability of a Water-Stable Lithium Metal Anode for a Lithium–Air Battery with Acetic Acid–Water Solutions. J Electrochem Soc 2010, 157, A214. <http://dx.doi.org/10.1149/1.3271103>
  • Xu Wu, Xiao Jie, Wang Deyu, Zhang Jian, Zhang Ji-Guang: Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries. Electrochem Solid-State Lett 2010, 13, A48. <http://dx.doi.org/10.1149/1.3305330>
  • Zhang Jian, Xu Wu, Li Xiaohong, Liu Wei: Air Dehydration Membranes for Nonaqueous Lithium–Air Batteries. J Electrochem Soc 2010, 157, A940. <http://dx.doi.org/10.1149/1.3430093>
  • Zhang G. Q., Zheng J. P., Liang R., Zhang C., Wang B., Hendrickson M., Plichta E. J.: Lithium–Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes. J Electrochem Soc 2010, 157, A953. <http://dx.doi.org/10.1149/1.3446852>
  • Andrei P., Zheng J. P., Hendrickson M., Plichta E. J.: Some Possible Approaches for Improving the Energy Density of Li-Air Batteries. J Electrochem Soc 2010, 157, A1287. <http://dx.doi.org/10.1149/1.3486114>
  • Giordani V., Freunberger S. A., Bruce P. G., Tarascon J.-M., Larcher D.: H[sub 2]O[sub 2] Decomposition Reaction as Selecting Tool for Catalysts in Li–O[sub 2] Cells. Electrochem Solid-State Lett 2010, 13, A180. <http://dx.doi.org/10.1149/1.3494045>
  • Park C.K., Park S.B., Lee S.Y., Lee H., Jang H., Cho W.I.: Electrochemical Performances of Lithium-air Cell with Carbon Materials. Bulletin of the Korean Chemical Society 2010, 31, 3221. <http://dx.doi.org/10.5012/bkcs.2010.31.11.3221>
  • Williford R.E., Zhang Ji-Guang: Air electrode design for sustained high power operation of Li/air batteries. J Power Sources - 2009, 194, 1164. <http://dx.doi.org/10.1016/j.jpowsour.2009.06.005>
  • Xu Wu, Xiao Jie, Zhang Jian, Wang Deyu, Zhang Ji-Guang: Optimization of Nonaqueous Electrolytes for Primary Lithium/Air Batteries Operated in Ambient Environment. J Electrochem Soc 2009, 156, A773. <http://dx.doi.org/10.1149/1.3168564>
  • Wolfenstine J., Allen J. L.: Reaction of Li0.33La0.57TiO3 with water. J Materials Sci 2008, 43, 7247. <http://dx.doi.org/10.1007/s10853-008-3048-5>
  • Zheng J. P., Liang R. Y., Hendrickson M., Plichta E. J.: Theoretical Energy Density of Li–Air Batteries. J Electrochem Soc 2008, 155, A432. <http://dx.doi.org/10.1149/1.2901961>