Pure Appl. Chem., 2007, Vol. 79, No. 4, pp. 801-809
http://dx.doi.org/10.1351/pac200779040801
Porphyrins as spectroscopic sensors for conformational studies of DNA
References
- 1. P. Belmont, J. F. Constant, M. Demeunyck. Chem. Soc. Rev. 30, 70 (2001). (http://dx.doi.org/10.1039/a904630e)
- 2. M. Mills, L. Lacroix, P. B. Arimondo, J.-L. Leroy, J.-C. Francois, H. Klump, J.-L. Mergny. Curr. Med. Chem.: Anti-Cancer Agents 2, 627 (2002).
- 3. C. Johnson. "CD of nucleic acids," in Circular Dichroism, Principles and Applications, 2nd ed., N. Berova, K. Nakanishi, R. W. Woody (Eds.), pp. 703-718, Wiley-VCH, New York (2000).
- 4. M. Ardhammar, B. Norden, T. Kurucsev. "DNA-drug interactions," in Circular Dichroism, Principles and Applications, 2nd ed., N. Berova, K. Nakanishi, R. W. Woody (Eds.), pp. 741-768, Wiley-VCH, New York (2000).
- 5. M. Coll, C. A. Frederick, A. H.-J. Wang, A. Rich. Proc. Natl. Acad. Sci. USA 84, 8385 (1987). (http://dx.doi.org/10.1073/pnas.84.23.8385)
- 6. D. Rentzeperis, L. A. Marky, T. J. Dwyer, B. H. Geierstanger, J. G. Pelton, D. E. Wemmer. Biochemistry 34, 2937 (1995). (http://dx.doi.org/10.1021/bi00009a025)
- 7. N. Berova, K. Nakanishi. "Exciton chirality method: Principles and applications," in Circular Dichroism, Principles and Applications, 2nd ed., N. Berova, K. Nakanishi, R. W. Woody (Eds.), pp. 337-382, Wiley-VCH, New York (2000).
- 8. X. F. Huang, K. Nakanishi, N. Berova. Chirality 12, 237 (2000). (http://dx.doi.org/10.1002/(SICI)1520-636X(2000)12:4<237::AID-CHIR10>3.0.CO;2-6)
- 9. G. Pescitelli, S. Gabriel, Y. K. Wang, J. Fleischhauer, R. W. Woody, N. Berova. J. Am. Chem. Soc. 125, 7613 (2003). (http://dx.doi.org/10.1021/ja030047v)
- 10. S. Oancea, F. Formaggio, S. Campestrini, Q. B. Broxterman, B. Kaptein, C. Toniolo. Biopolymers 72, 105 (2003). (http://dx.doi.org/10.1002/bip.10315)
- 11. F. X. Redl, M. Lutz, J. Daub. Chem. Eur. J. 7, 5350 (2001). (http://dx.doi.org/10.1002/1521-3765(20011217)7:24<5350::AID-CHEM5350>3.0.CO;2-F)
- 12. J. B. MacMillan, T. F. Molinski. J. Am. Chem. Soc. 126, 9944 (2004). (http://dx.doi.org/10.1021/ja047741a)
- 13. S. Matile, N. Berova, K. Nakanishi, J. Fleischhauer, R. W. Woody. J. Am. Chem. Soc. 118, 5198 (1996). (http://dx.doi.org/10.1021/ja960126p)
- 14. (a). R. J. Fiel. J. Biomolec. Struct. Dyn. 6, 12595 (1989);
- 14. (b). R. F. Pasternack, E. J. Gibbs. ACS Symp. Ser. 402, 59 (1989);
- 14. (c). R. F. Pasternack. Chirality 15, 329 (2003); (http://dx.doi.org/10.1002/chir.10206)
- 14. (d). L. G. Marzilli. New J. Chem. 14, 409 (1990).
- 15. (a). P. Kus, G. Knerr, L. Czuchajowski. Tetrahedron Lett. 31, 5133 (1990); (http://dx.doi.org/10.1016/S0040-4039(00)97823-7)
- 15. (b). L. Czuchajowski, J. Habdas, H. Niedbala, V. Wandrekar. J. Heterocycl. Chem. 29, 479 (1992);
- 15. (c). L. Czuchajowski, H. Niedbala, T. Shultz, W. Seaman. Bioorg. Med. Chem. Lett. 2, 1645 (1992); (http://dx.doi.org/10.1016/S0960-894X(00)80448-5)
- 15. (d). L. Czuchajowski, A. Palka, M. Morra, V. Wandrekar. Tetrahedron Lett. 34, 5409 (1993). (http://dx.doi.org/10.1016/S0040-4039(00)73921-9)
- 16. (a). E. I. Frolova, N. I. Komorova, E. M. Ivanova, G. P. Ponomariov, G. N. Kirillova, V. V. Vlassov. Nucleic Acids. Symp. Ser. 24, 286 (1991);
- 16. (b). H. Li, L. Czuchajowski. Trends Heterocycl. Chem. 6, 57 (1999);
- 16. (c). I. Bouamaied, E. Stulz. Synlett 1579 (2004);
- 16. (d). J. L. Sessler, B. Wang, A.Harriman. J. Am. Chem. Soc. 115, 10418 (1993); (http://dx.doi.org/10.1021/ja00075a091)
- 16. (e). N. Solladie, M. Gross. Tetrahedron Lett. 40, 3359 (1999); (http://dx.doi.org/10.1016/S0040-4039(99)00483-9)
- 16. (f). X. Jiang, R. K. Pandey, K. M. Smith. Tetrahedron Lett. 36, 365 (1995); (http://dx.doi.org/10.1016/0040-4039(94)02271-C)
- 16. (g). L. De Napoli, S. De Luca, G. Di Fabio, A. Messere, D. Montesarchio, G. Morelli, G. Piccialli, G.Tesauro. Eur. J. Org. Chem. 1013 (2000); (http://dx.doi.org/10.1002/(SICI)1099-0690(200003)2000:6<1013::AID-EJOC1013>3.0.CO;2-3)
- 16. (h). M. Endo, T. Shiroyama, M. Fujitsuka, T. Majima. J. Org. Chem. 70, 7468 (2005). (http://dx.doi.org/10.1021/jo050378l)
- 17. (a). C. Casas, C. J. Lacey, B. Meunier. Bioconjugate Chem. 4, 366 (1993); (http://dx.doi.org/10.1021/bc00023a011)
- 17. (b). B. Mestre, G.Pratviel, B. Meunier. Bioconjugate Chem. 6, 466 (1995); (http://dx.doi.org/10.1021/bc00034a017)
- 17. (c). P. Bigey, G. Pratviel, B. Meunier. J. Chem. Soc., Chem. Commun. 181 (1995); (http://dx.doi.org/10.1039/c39950000181)
- 17. (d). P. Bigey, G. Pratviel, B. Meunier. Nucleic Acids Res. 23, 3894 (1995); (http://dx.doi.org/10.1093/nar/23.19.3894)
- 17. (e). B. Mestre, A. Jakobs, G. Pratviel, B. Meunier. Biochemistry 35, 9140 (1996); (http://dx.doi.org/10.1021/bi9530402)
- 17. (f). M. Pitie, B. Meunier. J. Biol. Inorg. Chem. 1, 239 (1996); (http://dx.doi.org/10.1007/s007750050049)
- 17. (g). V. Duatre, S. Sixou, G.Favre, G. Pratviel, B. Meunier. J. Chem. Soc., Dalton Trans. 4113 (1997);
- 17. (h). B. Mestre, M.Pitie, C. Loup, C. Claparols, G. Pratviel, B. Meunier. Nucleic Acids Res. 25, 1022 (1997); (http://dx.doi.org/10.1093/nar/25.5.1022)
- 17. (i). I. Dubey, G. Pratviel, B. Meunier. J. Chem. Soc., Perkin Trans. 1 3088 (2000). (http://dx.doi.org/10.1039/b004431h)
- 18. K. Berlin, R. K. Jain, M. D. Simon, C. Richert. J. Org. Chem. 63, 1527 (1998). (http://dx.doi.org/10.1021/jo9718051)
- 19. H. Morales-Rojas, E. T. Kool. Org. Lett. 4, 4377 (2002). (http://dx.doi.org/10.1021/ol0267376)
- 20. M. Balaz, A. E. Holmes, M. Benedetti, P. C. Rodriguez, N. Berova, K. Nakanishi, G. Proni. J. Am. Chem. Soc. 127, 4172 (2005). (http://dx.doi.org/10.1021/ja043373z)
- 21. M. Balaz, M. De Napoli, A. E. Holmes, A. Mammana, K. Nakanishi, N. Berova, R. Purrello. Angew. Chem., Int. Ed. 44, 4006 (2005). (http://dx.doi.org/10.1002/anie.200501149)
- 22. M. Balaz, J. D. Steinkruger, G. A. Ellestad, N. Berova. Org. Lett. 7, 5613 (2005). (http://dx.doi.org/10.1021/ol0522992)
- 23. M. Balaz, B. C. Li, G. A. Ellestad, N. Berova. Angew. Chem., Int. Ed. 45, 3530 (2006). (http://dx.doi.org/10.1002/anie.200504431)
- 24. M. Balaz, B. C. Li, J. D. Steinkruger, G. A. Ellestad, K. Nakanishi, N. Berova. Org. Biomol. Chem. 4, 1865 (2006). (http://dx.doi.org/10.1039/b603409h)
- 25. (a). F. D. Lewis, X. Liu, Y. Wu, X. Zuo. J. Am. Chem. Soc. 125, 12729 (2003); (http://dx.doi.org/10.1021/ja036449k)
- 25. (b). F. D. Lewis, Y.Wu, L. Zhang, X. Zuo, R. T. Hayes, M. R. Wasielewski. J. Am. Chem. Soc. 126, 8206 (2004); (http://dx.doi.org/10.1021/ja048664m)
- 25. (c). F. D. Lewis, L. Zhang, X. Liu, X. Zuo, D. M. Tiede, H. Long, G. C. Schatz. J. Am. Chem. Soc. 127, 14445 (2005). (http://dx.doi.org/10.1021/ja0539387)
- 26. S. C. Ha, K. Lowenhaupt, A. Rich, Y. G. Kim, K. K. Kim. Nature 437, 1183 (2005). (http://dx.doi.org/10.1038/nature04088)
- 27. Z. Dogan, R. Paulini, J. A. Rojas Stutz, S. Narayanan, C. Richert. J. Am. Chem. Soc. 126, 4762 (2004). (http://dx.doi.org/10.1021/ja0394434)
- 28. M. Balaz, A. E. Holmes, M. Benedetti, G. Proni, N. Berova. Bioorg. Med. Chem. 13, 2413 (2005). (http://dx.doi.org/10.1016/j.bmc.2005.01.045)