Pure Appl. Chem., 2007, Vol. 79, No. 10, pp. 1691-1729
http://dx.doi.org/10.1351/pac200779101691
Defect-fluorite oxides M1-yLnyO2-y/2(Ln = lanthanide; M = Hf, Zr, Ce, U, Th): Structure, property, and applications
References
- 1. T. Uehara, K. Koto, S. Emura, F. Kanamaru. Solid State Ionics 23, 331 (1987). (http://dx.doi.org/10.1016/0167-2738(87)90012-9)
- 2. T. Moriga, S. Emura, A. Yoshiasa, S. Kikkawa, F. Kanamaru, K. Koto. Solid State Ionics 40/41, 357 (1990). (http://dx.doi.org/10.1016/0167-2738(90)90359-Y)
- 3. D. Komyoji, A. Yoshiasa, T. Moriga, S. Emura, F. Kanamaru, K. Koto. Solid State Ionics 50, 291 (1992). (http://dx.doi.org/10.1016/0167-2738(92)90232-E)
- 4. O. T. Sorensen (Ed.). Nonstoichiometric Oxides, Academic Press, New York (1981).
- 5. A. S. Nowick. Diffusion in Crystalline Solids, G. E. Murch, A. S. Nowick (Eds.), pp. 143-188, Academic Press, New York (1984).
- 6. T. Fujino, C. Miyake. In Handbook on the Physics and Chemistry of the Actinides, Vol. 6, A. J. Freeman, C. Keller (Eds.), Chap. 3, pp. 155-240, Elsevier Science, Amsterdam (1991).
- 7. N. Sakai, K. Yamaji, T. Horita, Y. P. Xiong, H. Yokokawa. In Handbook on the Physics and Chemistry of Rare Earths, Vol. 35, K. A. Gschneidner Jr., J.-C. G. Bunzli, V. K. Pecharsky (Eds.), pp. 1-43, Elsevier, Amsterdam (2005).
- 8. M. A. Subramanian, G. Aravamudan, G. V. Subba Rao. Prog. Solid State Chem. 15, 55 (1983). (http://dx.doi.org/10.1016/0079-6786(83)90001-8)
- 9. L. Minervini, R. W. Grimes. J. Am. Ceram. Soc. 83, 1873 (2000).
- 10. A. Nakamura, J. B. Wagner Jr. J. Electrochem. Soc. 127, 2325 (1980). (http://dx.doi.org/10.1149/1.2129406)
- 11. A. Nakamura, J. B. Wagner Jr. J. Electrochem. Soc. 133, 1542 (1986). (http://dx.doi.org/10.1149/1.2108965)
- 12. M. F. Lasker, R. A. Rapp. Z. Phys. Chem. NF 49, 198 (1966).
- 13. R. N. Blumenthal, F. S. Brugner, G. E. Garnier. J. Electrochem. Soc. 120, 2320 (1973). (http://dx.doi.org/10.1149/1.2403668)
- 14. C. Degueldre, U. Kasemeyer, F. Botta, G. Ledergeber. Mater. Res. Soc. Symp. Proc. 412, 15 (1996).
- 15. K. E. Sickafus, Hj. Matzke, Th. Hartmann, K. Yasuda, J. A. Valdez, P. Chodak III, M. Nastasi, R.A. Verral. J. Nucl. Mater. 274, 66 (1999).
- 16. S. X. Wang, B. D. Begg, L. M. Wang, R. C. Ewing, W. J. Weber, K. V. G. Kutty. J. Mater. Res. 14, 4470 (1999).
- 17. W. J. Weber, R. C. Ewing. Science 289, 2051 (2000). (http://dx.doi.org/10.1126/science.289.5487.2051)
- 18. R. C. Ewing, W. J. Weber, J. Lien. J. Appl. Phys. 95, 5949 (2004). (http://dx.doi.org/10.1063/1.1707213)
- 19. C. O'Driscoll. Chem. Br. Jan., 16 (2001).
- 20. K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimura, F. Li, K. J. McClellan, T. Hartmann. Science 289, 748 (2000). (http://dx.doi.org/10.1126/science.289.5480.748)
- 21. T. Van Dijk, K. J. de Vries, A. J. Burggraaf. Phys. Status Solidi A 58, 115 (1980). (http://dx.doi.org/10.1002/pssa.2210580114)
- 22. A. J. Burggraaf, T. Van Dijk, M. J. Verkerk. Solid State Ionics 5, 519 (1981). (http://dx.doi.org/10.1016/0167-2738(81)90306-4)
- 23. M. P. Van Dijk, K. J. de Vries, A. J. Burggraaf. Solid State Ionics 9/10, 913 (1981). (http://dx.doi.org/10.1016/0167-2738(83)90110-8)
- 24. M. P. Van Dijk, A. N. Cormack, A. J. Burggraaf, C. A. Catlow. Solid State Ionics 17, 159 (1981). (http://dx.doi.org/10.1016/0167-2738(85)90067-0)
- 25. M. P. Van Dijk, F. C. Mulhoff, A. J. Burggraaf. J. Solid State Chem. 62, 377 (1986). (http://dx.doi.org/10.1016/0022-4596(86)90253-7)
- 26. D. Steele, B. E. Fender. J. Phys. C: Solid State Phys. 7, 1 (1974). (http://dx.doi.org/10.1088/0022-3719/7/1/009)
- 27. M. Morinaga, J. B. Cohen. Acta. Crystallogr., Sect. A 36, 520 (1980). (http://dx.doi.org/10.1107/S0567739480001179)
- 28. M. H. Tuller, J. D.-Ghys, H. Dexpert, P. Lagarde. J. Solid State Chem. 69, 153 (1987).
- 29. M. Cole, C. R. A. Catlow, J. P. Dragun. J. Phys. Chem. Solids 51, 507 (1990). (http://dx.doi.org/10.1016/0022-3697(90)90156-A)
- 30. H. Otobe, A. Nakamura. Solid Oxide Fuel Cells (SOFC)-VI, Electrochem. Soc. Proc. 99-19, p. 463, NJ (1999).
- 31. (a). N. M. Masaki, N. R. D. Guillermo, H. Otobe, A. Nakamura, Y. Izumiyama, Y. Hinatsu. In Mass and Charge Transport in Inorganic Materials: Fundamentals to Devices, Part A, P.Vincenzini, V. Buscaglia (Eds.), p. 1233, TECHNA, Faenza (2000);
- 31. (b). D. Harada, Y. Hinatsu, N. M. Masaki, A. Nakamura. J. Am. Ceram. Soc. 85, 647 (2002);
- 31. (c). N. M. Masaki, H. Otobe, A.Nakamura. Hyperfine Interact. C 305 (2003);
- 31. (d). N. M. Masaki, H. Otobe, A. Nakamura, D.Harada, K. Ito, Y. Sasaki, Y. Hinatsu. J. Nucl. Sci. Technol. Suppl. 3, 217 (2002);
- 31. (e). N.M.Masaki, H. Otobe, A. Nakamura, D. Harada, Y. Hinatsu. Mater. Res. Bull. 40, 650 (2005); (http://dx.doi.org/10.1016/j.materresbull.2005.01.003)
- 31. (f). N. M. Masaki, A. Nakamura, F. Furuuchi, Y. Hinatsu. J. Phys. Chem. Solids 66, 312 (2005). (http://dx.doi.org/10.1016/j.jpcs.2004.07.017)
- 32. R. D. Shannon. Acta Crystallogr., Sect. A 32, 751 (1976). (http://dx.doi.org/10.1107/S0567739476001551)
- 33. (a). J. Wang, A. Nakamura, M. Takeda. Solid State Ionics 164, 185 (2003); (http://dx.doi.org/10.1016/j.ssi.2003.09.003)
- 33. (b). J. Wang, H. Otobe, A. Nakamura, M. Takeda. J. Solid State Chem. 176, 105 (2003); (http://dx.doi.org/10.1016/S0022-4596(03)00353-0)
- 33. (c). A. Nakamura, H. Otobe, J.Wang, M. Takeda. J. Phys. Chem. Solids 66, 35 (2005);
- 33. (d). J. Wang, M. Takeda, A. Nakamura. J. Nucl. Mater. 340, 33 (2005). (http://dx.doi.org/10.1016/j.jnucmat.2004.08.025)
- 34. I. C. Cosentino, R. Muccillo. Mater. Lett. 48, 253 (2001). (http://dx.doi.org/10.1016/S0167-577X(00)00311-6)
- 35. D. J. Kim. J. Am. Ceram. Soc. 72, 1415 (1989). (http://dx.doi.org/10.1111/j.1151-2916.1989.tb07663.x)
- 36. R. P. Ingel, D. Lewis III. J. Am. Ceram. Soc. 69, 1415 (1986). (http://dx.doi.org/10.1111/j.1151-2916.1986.tb04741.x)
- 37. V. I. Aleksandrov, G. E. Valyano, B. V. Luken, V. V. Osiko, A. E. Cautbort, V. M. Tatarintsev, V.N. Filatova. Izv. Akad. Nauk. SSSR, Neorg. Mater. 12, 273 (1976).
- 38. (a). M. Yashima, N. Ishizawa, M. Yoshimura. J. Am. Ceram. Soc. 75, 1541 (1992); (http://dx.doi.org/10.1111/j.1151-2916.1992.tb04222.x)
- 38. (b). M. Yashima, N. Ishizawa, M. Yoshimura. J. Am. Ceram. Soc. 75, 1550 (1992). (http://dx.doi.org/10.1111/j.1151-2916.1992.tb04223.x)
- 39. A-an Zen. Am. Mineral. 41, 523 (1956).
- 40. C. P. Kempter. Phys. Status Solidi 18, K117 (1966). (http://dx.doi.org/10.1002/pssb.19660180251)
- 41. P. P. Porta, A. Anichini. J. Chem. Soc. Faraday Trans. 1 76, 2448 (1980). (http://dx.doi.org/10.1039/f19807602448)
- 42. V. Grover, A. K. Tyagi. J. Nucl. Mater. 305, 83 (2002). (http://dx.doi.org/10.1016/S0022-3115(02)01157-1)
- 43. (a). F. A. Mumpton, R. Roy. J. Am. Ceram. Soc. 43, 234 (1960); (http://dx.doi.org/10.1111/j.1151-2916.1960.tb14590.x)
- 43. (b). H. Radzewitz. KFK433 (1966).
- 44. (a). Y. Hinatsu, T. Fujino. J. Solid State Chem. 60, 244 (1985); (http://dx.doi.org/10.1016/0022-4596(85)90118-5)
- 44. (b). Y. Hinatsu, T. Fujino. J. Solid State Chem. 63, 250 (1986). (http://dx.doi.org/10.1016/0022-4596(86)90175-1)
- 45. P. Duwez, E. Loh. J. Am. Ceram. Soc. 40, 321 (1957). (http://dx.doi.org/10.1111/j.1151-2916.1957.tb12629.x)
- 46. E. C. Subbarao, P. H. Sutter, J. Hrizo. J. Am. Ceram. Soc. 48, 443 (1965). (http://dx.doi.org/10.1111/j.1151-2916.1965.tb14794.x)
- 47. T. Kudo, H. Obayashi. J. Electrochem. Soc. 122, 142 (1975). (http://dx.doi.org/10.1149/1.2134143)
- 48. J. D. Mucllourgh. J. Am. Chem. Soc. 72, 1386 (1950). (http://dx.doi.org/10.1021/ja01159a085)
- 49. R. T. Dirstine, R. N. Blumenthal, T. F. Kuech. J. Electrochem. Soc. 126, 264 (1979). (http://dx.doi.org/10.1149/1.2129018)
- 50. M. R. Thornber, D. J. M. Bevan, E. Summerville. J. Solid State Chem. 1, 545 (1970). (http://dx.doi.org/10.1016/0022-4596(70)90140-4)
- 51. P. Duran, C. Pascual, J. P. Coutures, S. R. Skaggs. J. Am. Ceram. Soc. 66, 101 (1983). (http://dx.doi.org/10.1111/j.1151-2916.1983.tb09983.x)
- 52. F. M. Spiridinov, L. M. Komissarova. Zh. Neorg. Khim. 15, 875 (1970).
- 53. A. I. Ioffe, D. S. Ruthman, S. V. Karpachov. J. Phys. Chem. Solids 23, 141 (1977).
- 54. R. E. W. Casselton. Phys. Status Solidi A 2, 571 (1070).
- 55. J. Leferire. Ann. Chim. 8, 117 (1963).
- 56. W. Baukel, R. Sheidegger. Ber. Dtsch. Keram. Soc. 45, 611 (1968).
- 57. V. S. Stubican, R. C. Hink, S. P. Roy. J. Am. Ceram. Soc. 61, 17 (1978). (http://dx.doi.org/10.1111/j.1151-2916.1978.tb09220.x)
- 58. JCPDS Powder Diffraction FileTM (Inorganic Phases) (1941-2001) and its subsequent CD-ROM version, International Centre for Diffraction Data, PA, USA.
- 59. J. J. Katz, G. Seaborg, L. S. Morss. In The Chemistry of the Actinide Elements, Vol. 2, p. 1156, Chapman and Hall, New York (1986).
- 60. D. Michel, M. Perez, Y. Jorba, R. Collongues. Mater. Res. Bull. 9, 1457 (1974). (http://dx.doi.org/10.1016/0025-5408(74)90092-0)
- 61. (a). V. I. Goldanskii, E. F. Markov. In Chemical Applications of Mossbauer Spectroscopy, V. I. Goldanskii, R. H. Herber (Eds.), p. 103, Academic Press, New York (1968);
- 61. (b). N. N. Greenwood, T. C. Gibb. Mossbauer Spectroscopy, Chapman and Hall, London (1971);
- 61. (c). G.Czjzek. In Mossbauer Spectroscopy Applied to Magnetism and Materials Science, Vol. 1, G.J. Long, F. Grandjean (Eds.), Chap. 9, Plenum Press, New York (1993);
- 61. (d). H. Sano. Mossbauer Spectroscopy, The Chemical Application, Kodansha, Tokyo (1972) (in Japanese).
- 62. P. D. Battle, T. C. Gibb, P. Lightfoot, D. C. Munro. J. Solid State Chem. 83, 31 (1989). (http://dx.doi.org/10.1016/0022-4596(89)90050-9)
- 63. C. L. Chien, A. W. Sleight. Phys. Rev. B 18, 2031 (1978). (http://dx.doi.org/10.1103/PhysRevB.18.2031)
- 64. (a). H. Armon, E. R. Bauminger, A. Diamant, I. Nowik, S. Ofer. Solid State Commun. 15, 543 (1973); (http://dx.doi.org/10.1016/0038-1098(74)91138-7)
- 64. (b). E. R. Bauminger, A. Diamant, I. Felner, I. Nowik, S. Ofer. Phys. Lett. A 50, 321 (1974); (http://dx.doi.org/10.1016/0375-9601(74)90042-5)
- 64. (c). E. R. Bauminger, A. Diamant, I. Felner, I. Nowik, A. Mustachi, S. Ofer. J. Phys. Colloque C6, T37, C6-47 (1976);
- 64. (d). B. D. Dunlop, G. K. Shenoy, J. M. Friedt, M. Meyer, G. J. McCarthy. Phys. Rev. B 18, 1936 (1978). (http://dx.doi.org/10.1103/PhysRevB.18.1936)
- 65. S. Tanabe, K. Hirao, N. Soga. J. Non-Cryst. Solids 113, 178 (1989). (http://dx.doi.org/10.1016/0022-3093(89)90009-4)
- 66. C. Keller, U. Berndt, H. Engener, L. Leiter. J. Solid State Chem. 4, 453 (1972). (http://dx.doi.org/10.1016/0022-4596(72)90161-2)
- 67. A. Nakamura, K. Yoshii. J. Nucl. Sci. Technol. Suppl. 3, 160 (2002).
- 68. (a). A. Nakamura. Z. Phys. Chem. 207, 223 (1998);
- 68. (b). C. Miyake, T. Isobe, S. Imoto. J. Nucl. Mater. 152, 64 (1988). (http://dx.doi.org/10.1016/0022-3115(88)90141-9)
- 69. (a). I. D. Brown. In Structure and Bonding in Crystals, Vol. II, M. O'Keeffe, A. Navrotsky (Eds.), Chap. 14, pp. 1-30, Academic Press, New York (1981);
- 69. (b). I. D. Brown. The Chemical Bond in Inorganic Chemistry, IUCr Mongraphs on Crystallograpy-12, Oxford University Press, Oxford (2002).
- 70. S. M. Haile, S. Meilicke. Mater. Res. Soc. Proc. 398, 599 (1995).
- 71. J. Wang, M. Takeda, T. Shishido. J. Nucl. Mater. 340, 52 (2004). (http://dx.doi.org/10.1016/j.jnucmat.2004.08.024)
- 72. M. Zinkevich, Ch. Wang, F. M. Morales, M. Ruhle, F. Aldinger. J. Alloys Compd. 398, 261 (2005). (http://dx.doi.org/10.1016/j.jallcom.2005.02.022)
- 73. W. A. Barton, J. D. Cashion. J. Phys. C 12, 2897 (1979). (http://dx.doi.org/10.1088/0022-3719/12/14/024)
- 74. M. J. Besnus, J. P. Kappler, A. Meyer. J. Phys. F: Metal Phys. 13, 597 (1983). (http://dx.doi.org/10.1088/0305-4608/13/3/010)
- 75. (a). C. Degueldre, P. Tissot, H. Lartigue, M. Pouchon. Thermochim. Acta 403, 267 (2003); (http://dx.doi.org/10.1016/S0040-6031(03)00060-1)
- 75. (b). M.V. Nevitt, Y. Fang, S.-K. Chan. J. Am. Ceram. Soc. 73, 2502 (1990); (http://dx.doi.org/10.1111/j.1151-2916.1990.tb07619.x)
- 75. (c). T. Tojo, T. Atake, T.Mori, H. Yamamura. J. Chem. Thermodyn. 31, 831 (1999). (http://dx.doi.org/10.1006/jcht.1998.0481)
- 76. (a). H. W. Goldstein, E. F. Nelson, P. W. Walsh, D. White. J. Phys. Chem. 63, 1445 (1959); (http://dx.doi.org/10.1021/j150579a028)
- 76. (b). B.M. Walsh, J. M. McMahon, W. C. Edwards, N. P. Barnos, R. W. Equall, R. L. Hutcheson. J. Opt. Soc. Am. 19, 2893 (2002);
- 76. (c). H. Li, C. Y. Wu, J. C. Ho. Phys. Rev. B 49, 1447 (1994). (http://dx.doi.org/10.1103/PhysRevB.49.1447)
- 77. (a). S. Lutique, P. Javorsky, R. M. J. Konings, J.-C. Krupa, A. C. G. van Genderen, J. C. van Miltenburg, F. Wastin. J. Chem. Thermodyn. 36, 609 (2004); (http://dx.doi.org/10.1016/j.jct.2004.03.017)
- 77. (b). S. Lutique, P. Javorsky, R. M. J. Konings, A. C. G. van Genderen, J. C. van Miltenburg, F. Wastin. J. Chem. Thermodyn. 35, 955 (2003); (http://dx.doi.org/10.1016/S0021-9614(03)00040-5)
- 77. (c). Z. Hiroi, K. Matsuhira, S. Takagi, T. Tayama, T. Sakakibara. J. Phys. Soc. Jpn. 72, 411 (2003); (http://dx.doi.org/10.1143/JPSJ.72.411)
- 77. (d). J. M. Pruneda, E. Artacho. Phys. Rev. B 72, 085107 (2005); (http://dx.doi.org/10.1103/PhysRevB.72.085107)
- 77. (e). S. W. Han, J. S. Gardner, C. H. Booth. Phys. Rev. B 69, 024416 (2004). (http://dx.doi.org/10.1103/PhysRevB.69.024416)
- 78. K. Kawata, H. Maekawa, T. Nemoto, T. Yamamura. Solid State Inonics 177, 1687 (2006). (http://dx.doi.org/10.1016/j.ssi.2006.02.030)
- 79. T. Hisashige, Y. Yamamura, T. Tsuji. J. Alloys Compd. 408-412, 1153 (2006). (http://dx.doi.org/10.1016/j.jallcom.2004.12.190)