Pure Appl. Chem., 2006, Vol. 78, No. 9, pp. 1759-1769
http://dx.doi.org/10.1351/pac200678091759
Experimental approaches to the preparation of supported metal nanoparticles
CrossRef Cited-by Linking
- Fischer N., van Steen E., Claeys M.: Tri-cobalt Carboxylate as a Catalyst and Catalyst Precursor in the Fischer-Tropsch Synthesis. ChemCatChem 2014, n/a. <http://dx.doi.org/10.1002/cctc.201300932>
- Mogorosi Ramoshibidu P., Claeys Michael, Steen Eric: Enhanced Activity via Surface Modification of Fe-Based Fischer–Tropsch Catalyst Precursor with Titanium Butoxide. Top Catal 2014, 57, 572. <http://dx.doi.org/10.1007/s11244-013-0213-0>
- Carballo Juan María González, Finocchio Elisabetta, García-Rodriguez Sergio, Ojeda Manuel, Fierro José Luis García, Busca Guido, Rojas Sergio: Insights into the deactivation and reactivation of Ru/TiO2 during Fischer–Tropsch synthesis. Catalysis Today 2013, 214, 2. <http://dx.doi.org/10.1016/j.cattod.2012.09.018>
- Botes F.G., Niemantsverdriet J.W., van de Loosdrecht J.: A comparison of cobalt and iron based slurry phase Fischer–Tropsch synthesis. Catalysis Today 2013, 215, 112. <http://dx.doi.org/10.1016/j.cattod.2013.01.013>
- Minnermann M., Grossmann H.K., Pokhrel S., Thiel K., Hagelin-Weaver H., Bäumer M., Mädler L.: Double flame spray pyrolysis as a novel technique to synthesize alumina-supported cobalt Fischer–Tropsch catalysts. Catalysis Today 2013, 214, 90. <http://dx.doi.org/10.1016/j.cattod.2013.04.001>
- Fischer N., van Steen E., Claeys M.: Structure sensitivity of the Fischer–Tropsch activity and selectivity on alumina supported cobalt catalysts. Journal of Catalysis 2013, 299, 67. <http://dx.doi.org/10.1016/j.jcat.2012.11.013>
- Chonco Zandile H., Ferreira Alta, Lodya Lonzeche, Claeys Michael, van Steen Eric: Comparing silver and copper as promoters in Fe-based Fischer–Tropsch catalysts using delafossite as a model compound. Journal of Catalysis 2013, 307, 283. <http://dx.doi.org/10.1016/j.jcat.2013.08.005>
- Kang Jincan, Deng Weiping, Zhang Qinghong, Wang Ye: Ru particle size effect in Ru/CNT-catalyzed Fischer-Tropsch synthesis. Journal of Energy Chemistry 2013, 22, 321. <http://dx.doi.org/10.1016/S2095-4956(13)60039-X>
- Su Dang Sheng, Perathoner Siglinda, Centi Gabriele: Nanocarbons for the Development of Advanced Catalysts. Chem. Rev. 2013, 113, 5782. <http://dx.doi.org/10.1021/cr300367d>
- Zaera Francisco: Nanostructured materials for applications in heterogeneous catalysis. Chem. Soc. Rev. 2013, 42, 2746. <http://dx.doi.org/10.1039/c2cs35261c>
- Fischer N., Minnermann M., Baeumer M., Steen E., Claeys M.: Metal Support Interactions in Co3O4/Al2O3 Catalysts Prepared from w/o Microemulsions. Catal Lett 2012, 142, 830. <http://dx.doi.org/10.1007/s10562-012-0831-3>
- Mogorosi Ramoshibidu P., Fischer Nico, Claeys Michael, van Steen Eric: Strong-metal�support interaction by molecular design: Fe�silicate interactions in Fischer�Tropsch catalysts. Journal of Catalysis 2012, 289, 140. <http://dx.doi.org/10.1016/j.jcat.2012.02.002>
- Torres Galvis Hirsa M., Bitter Johannes H., Davidian Thomas, Ruitenbeek Matthijs, Dugulan A. Iulian, de Jong Krijn P.: Iron Particle Size Effects for Direct Production of Lower Olefins from Synthesis Gas. J. Am. Chem. Soc. 2012, 134, 16207. <http://dx.doi.org/10.1021/ja304958u>
- Wrobel Rafal. J.: Thermal stability of nanocrystalline iron. Mater Sci-Pol 2012, 30, 63. <http://dx.doi.org/10.2478/s13536-012-0009-0>
- Sun Bo, Qiao Minghua, Fan Kangnian, Ulrich Jeffrey, Tao Franklin Feng: Fischer-Tropsch Synthesis over Molecular Sieve Supported Catalysts. ChemCatChem 2011, 3, 542. <http://dx.doi.org/10.1002/cctc.201000352>
- Abelló Sònia, Montané Daniel: Exploring Iron-based Multifunctional Catalysts for Fischer-Tropsch Synthesis: A Review. ChemSusChem 2011, 4, 1538. <http://dx.doi.org/10.1002/cssc.201100189>
- Aïssa B., Therriault D., El Khakani M.A.: On-substrate growth of single-walled carbon nanotube networks by an “all-laser” processing route. Carbon 2011, 49, 2795. <http://dx.doi.org/10.1016/j.carbon.2011.03.006>
- Fischer N., van Steen E., Claeys M.: Preparation of supported nano-sized cobalt oxide and fcc cobalt crystallites. Catal Today 2011, 171, 174. <http://dx.doi.org/10.1016/j.cattod.2011.03.018>
- Gude Kalyani, Narayanan Radha: Colloidal Supported Metal Nanoparticles (CSMNs) as Effective Nanocatalysts for Liquid-Phase Suzuki Cross-Coupling Reactions. J Phys Chem C 2011, 115, 12716. <http://dx.doi.org/10.1021/jp200018c>
- Campelo Juan M., Luna Diego, Luque Rafael, Marinas José M., Romero Antonio A.: Sustainable Preparation of Supported Metal Nanoparticles and Their Applications in Catalysis. ChemSusChem 2009, 2, 18. <http://dx.doi.org/10.1002/cssc.200800227>
- den Breejen J. P., Radstake P. B., Bezemer G. L., Bitter J. H., Frøseth V., Holmen A., Jong K. P. de: On the Origin of the Cobalt Particle Size Effects in Fischer−Tropsch Catalysis. J Am Chem Soc 2009, 131, 7197. <http://dx.doi.org/10.1021/ja901006x>
- van Steen E., Claeys M.: Fischer-Tropsch Catalysts for the Biomass-to-Liquid (BTL)-Process. Chem Eng Technol 2008, 31, 655. <http://dx.doi.org/10.1002/ceat.200800067>
- Lee I., Morales R., Albiter M. A., Zaera F.: Synthesis of heterogeneous catalysts with well shaped platinum particles to control reaction selectivity. Proceedings of the National Academy of Sciences 2008, 105, 15241. <http://dx.doi.org/10.1073/pnas.0805691105>
- Barkhuizen David, Mabaso Itai, Viljoen Elvera, Welker Cathrin, Claeys Michael, van Steen Eric, Fletcher Jack C. Q.: Experimental Approaches to the Preparation of Supported Metal Nanoparticles. ChemInform 2006, 37. <http://dx.doi.org/10.1002/chin.200645228>