Pure Appl. Chem., 2006, Vol. 78, No. 5, pp. 1003-1014
http://dx.doi.org/10.1351/pac200678051003
One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications
Abstract:
One-pot reaction of iron(III) acetylacetonate, Fe(acac)3, [or Fe(acac)3 and M(acac)2 where M = Mn and Co], with 1,2-alkanediol, oleic acid, and oleylamine in high boiling organic solvent leads to monodisperse ferrite MFe2O4 nanoparticles. Depending on the concentration of the metal precursors, surfactant-to-metal precursor ratio and the solvent used in the reaction, the particle size from this one-pot reaction can be tuned from 4 to 15 nm. The as-synthesized iron oxide nanoparticles have an inverse spinel structure, and their magnetic properties are controlled by particle size and M in the MFe2O4 structure. The hydrophobic iron oxide nanoparticles are readily transformed into hydrophilic ones by functional phospholipid addition to the as-synthesized particles and as a result, the monodisperse nanoparticles are readily functionalized with biotin, -COOH, -SH, and -NH2, facilitating their link to biomolecules for biomedical applications.
Keywords
biomedical applications; chemical synthesis; ferrite nanoparticles; phospholipid coating; surface functionalization.