Pure Appl. Chem., 2004, Vol. 76, No. 1, pp. 215-221
http://dx.doi.org/10.1351/pac200476010215
Origin of the enhanced structural and reorientational relaxation rates in the presence of relatively weak dc electric fields
CrossRef Cited-by Linking
- Shevkunov S. V.: Water vapor nucleation on a crystal surface in a strong electric field. Colloid J 2013, 75, 444. <http://dx.doi.org/10.1134/S1061933X1304011X>
- Diallo Souleymane, Mamontov Eugene, Podlesnyak Andrey, Ehlers Georg, Wada Nobuo, Inagaki Shinji, Fukushima Yoshiaki: Dynamics of the Fast Component of Nano-Confined Water Under Electric Field. J. Phys. Soc. Jpn. 2013, 82, SA007. <http://dx.doi.org/10.7566/JPSJS.82SA.SA007>
- Aider Mohammed, Gnatko Elena, Benali Marzouk, Plutakhin Gennady, Kastyuchik Alexey: Electro-activated aqueous solutions: Theory and application in the food industry and biotechnology. Innovative Food Science & Emerging Technologies 2012. <http://dx.doi.org/10.1016/j.ifset.2012.02.002>
- Skinner L. B., Benmore C. J., Shyam B., Weber J. K. R., Parise J. B.: Structure of the floating water bridge and water in an electric field. Proceedings of the National Academy of Sciences 2012, 109, 16463. <http://dx.doi.org/10.1073/pnas.1210732109>
- Rai Dhurba, Kulkarni Anant D., Gejji Shridhar P., Pathak Rajeev K.: Water clusters (H[sub 2]O)[sub n], n=6–8, in external electric fields. J Chem Phys 2008, 128, 034310. <http://dx.doi.org/10.1063/1.2816565>
- Choi Young Cheol, Pak Chaeho, Kim Kwang S.: Electric field effects on water clusters (n=3–5): Systematic ab initio study of structures, energetics, and transition states. J Chem Phys 2006, 124, 094308. <http://dx.doi.org/10.1063/1.2173259>