CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2004, Vol. 76, No. 1, pp. 203-213

Translational and rotational dynamics in supercritical methanol from molecular dynamics simulation

Michalis Chalaris and J. Samios

Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece

Abstract: The purpose of this paper is to review our latest molecular dynamics (MD) simulation studies on the temperature and density dependence of the translational and reorientational motion in supercritical (SC) methanol. In the present treatment, Jorgensen's [W. L. Jorgensen. J. Phys. Chem. A 102, 8641 (1998)] transferable potential model, tested in a recent MD study of hydrogen bonds in this fluid [M. Chalaris and J. Samios, J. Phys. Chem. B 103, 1161 (1999)], was employed to simulate the dynamics of the system. The simulations were performed in the canonical (NVT) ensemble along the isotherms 523, 623, and 723 K and densities corresponding to the pressures from 10 to 30 MPa. Several dynamical properties of the fluid have been obtained and analyzed in terms of appropriate time-correlation functions (CFs). With respect to the translational dynamics, the self-diffusion coefficients obtained have been used to test the applicability of the well-known Chapman-Enskog kinetic theory. We have found that the theoretical predictions for the self-diffusion coefficients are only in qualitative agreement with the MD results over the whole temperature and density range studied. Finally, the inspection of the reorientational CFs and their corresponding correlation times lead to the conclusion that the reorientational motion of the SC methanol molecules in the sample is anisotropic.