Pure Appl. Chem., 2003, Vol. 75, No. 9, pp. 1315-1323
http://dx.doi.org/10.1351/pac200375091315
Evolving patterns in boron cluster chemistry
CrossRef Cited-by Linking
- Zeonjuk Lei Liu, Vankova Nina, Knapp Carsten, Gabel Detlef, Heine Thomas: On the gas-phase dimerization of negatively charged closo-dodecaborates: a theoretical study. Phys. Chem. Chem. Phys. 2013, 15, 10358. <http://dx.doi.org/10.1039/c3cp50722j>
- Varns Rebecca, Strange Paul: Super-atom properties of 13 atom clusters of group 13 elements. Phys. Status Solidi B 2012, 249, 2179. <http://dx.doi.org/10.1002/pssb.201248199>
- Liao Rongbao: Interpreting the electronic structure of the hydrogen-bridge bond in B2H6 through a hypothetical reaction. Struc Chem 2012, 23, 525. <http://dx.doi.org/10.1007/s11224-011-9877-x>
- Liao Rongbao, Chai Lanlan, Sa Rongjian: A discussion on the electronic structure of arachno-borane B4H10 . Struc Chem 2012, 23, 841. <http://dx.doi.org/10.1007/s11224-011-9901-1>
- Liao Rongbao, Tian Zhimei, Cui Yumin, Sa Rongjian: A topological pattern for the understanding of the stability and aromaticity of closo-boranes: constructing closo-borane from nido-boranes. Struct Chem 2012, 23, 1797. <http://dx.doi.org/10.1007/s11224-012-9982-5>
- Hazrati Ebrahim, Brocks Geert, de Wijs Gilles A.: First-Principles Study of LiBH4 Nanoclusters and Their Hydrogen Storage Properties. J. Phys. Chem. C 2012, 116, 18038. <http://dx.doi.org/10.1021/jp303720v>
- Lobayan Rosana M., Bochicchio Roberto C., Torre Alicia, Lain Luis: Electronic Structure and Effectively Unpaired Electron Density Topology in closo-Boranes: Nonclassical Three-Center Two-Electron Bonding. J Chem Theory Comput 2011, 7, 979. <http://dx.doi.org/10.1021/ct100753q>
- Zdetsis Aristides D: Designing novel Sn-Bi, Si-C and Ge-C nanostructures, using simple theoretical chemical similarities. Nanoscale Res Lett 2011, 6, 362. <http://dx.doi.org/10.1186/1556-276X-6-362>
- Raynaud Christophe, Rosal Iker, Jolibois Franck, Maron Laurent, Poteau Romuald: Multicentered effective group potentials: ligand-field effects in organometallic clusters and dynamical study of chemical reactivity. Theor Chem Acc 2010, 126, 151. <http://dx.doi.org/10.1007/s00214-009-0615-z>
- Zdetsis Aristides D.: Structural reciprocity effect in binary silicon–bismuth clusters. chem phys letts 2010, 493, 45. <http://dx.doi.org/10.1016/j.cplett.2010.05.010>
- Kaim Wolfgang, Hosmane Narayan S., Záliš Stanislav, Maguire John A., Lipscomb William N.: Boratome als Spinträger in zwei- und dreidimensionalen Systemen. Angew Chem 2009, 121, 5184. <http://dx.doi.org/10.1002/ange.200803493>
- Kaim Wolfgang, Hosmane Narayan S., Záliš Stanislav, Maguire John A., Lipscomb William N.: Boron Atoms as Spin Carriers in Two- and Three-Dimensional Systems. Angew Chem Int Ed 2009, 48, 5082. <http://dx.doi.org/10.1002/anie.200803493>
- del Rosal I., Jolibois F., Maron L., Philippot K., Chaudret B., Poteau R.: Ligand effect on the NMR, vibrational and structural properties of tetra- and hexanuclear ruthenium hydrido clusters: a theoretical investigation. Dalton Trans 2009, 2142. <http://dx.doi.org/10.1039/b817055j>
- Jacobsen Heiko: Hypovalency—a kinetic-energy density description of a 4c–2e bond. Dalton Trans 2009, 4252. <http://dx.doi.org/10.1039/b823382a>
- Zdetsis Aristides D.: Success and pitfalls of the Si[sub n−2]C[sub 2]H[sub 2]–C[sub 2]B[sub n−2]H[sub n] isolobal analogy: Depth and breadth of the boron connection. J Chem Phys 2009, 130, 064303. <http://dx.doi.org/10.1063/1.3071260>
- Zdetsis Aristides D.: Rationalizing and functionalizing stannaspherene: Very stable stannaspherene “alloys”. J Chem Phys 2009, 131, 224310. <http://dx.doi.org/10.1063/1.3267046>
- Zdetsis Aristides D.: A new class of silicon-carbon clusters: A full study of the hydrogenated Si[sub n]C[sub 2]H[sub 2], n=3,4,5, clusters in comparison with their isoelectronic carboranes C[sub 2]B[sub n]H[sub n+2]. J Chem Phys 2008, 128, 184305. <http://dx.doi.org/10.1063/1.2911694>
- Zdetsis Aristides D.: Fluxional and aromatic behavior in small magic silicon clusters: A full ab initio study of Si[sub n], Si[sub n][sup 1−], Si[sub n][sup 2−], and Si[sub n][sup 1+], n=6, 10 clusters. J Chem Phys 2007, 127, 014314. <http://dx.doi.org/10.1063/1.2746030>
- Zdetsis Aristides D.: Analogy of silicon clusters with deltahedral boranes: How far can it go? Reexamining the structure of Si[sub n] and Si[sub n]2−], n=5–13 clusters. J Chem Phys 2007, 127, 244308. <http://dx.doi.org/10.1063/1.2816138>
- Du Mao-Hua, Saito Susumu, Zhang S. B.: Unifying Chemical Bonding Models for Boranes. MRS Proc 2007, 1038, 1038-O05-07. <http://dx.doi.org/10.1557/PROC-1038-O05-07>
- Brown Christopher A., McKee Michael L.: Rearrangements in icosahedral boranes and carboranes revisited. J Mol Model 2006, 12, 653. <http://dx.doi.org/10.1007/s00894-006-0111-5>
- Brown Christopher A., McKee Michael L.: Rearrangements in icosahedral boranes and carboranes revisited. J Mol Model 2005, 1. <http://dx.doi.org/10.1007/s00894-005-0039-1>
- Fox Mark A., Wade Ken: Evolving Patterns in Boron Cluster Chemistry. ChemInform 2004, 35. <http://dx.doi.org/10.1002/chin.200403250>